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Abstract. We present a simple model for use in the de-
sign of reliable phase-locked loops for diode lasers, and a
broad-range digital phase-frequency detector. By permitting
a larger RMS phase error than analog detectors, the digital
phase detector operates with a lower S/N ratio and locking
bandwidth and allows very stable phase locking. Applica-
tions in optical frequency chains are discussed.

PACS: 42.55.Px; 42.62.Eh

Recent advances in high-resolution laser spectroscopy [1]
have reinforced interest in the direct measurement of optical
frequencies. Such measurements can be used to test basic
theories, such as QED, to determine fundamental constants
or to realize optical frequency standards. Frequency chains
connecting optical secondary standards to interesting atomic
transitions have already been realized [2, 3] or proposed [4].

One of the main limits to these experiments is the small
number of secondary standards available. Usually, the fre-
quency to be measured does not lie close enough to the
harmonic of any standard. Large frequency differences may
be coherently bridged using ultrafast detectors [5, 6], opti-
cal comb generators [7] and optical frequency dividers [8],
but in each case and in particular in the latter, the com-
plexity of the chain is increased, requiring several phase-
locked sources. Diode lasers are particularly attractive for
this purpose because they are inexpensive, small, and their
frequency can be controlled by merely changing the injec-
tion current. In order to have a simple and compact optical
setup, it is convenient to use lasers where the frequency is
tuned and stabilized with an external diffraction grating. In
comparison with cavity stabilized lasers [9], however, these
sources have a broader linewidth and require a larger servo-
bandwidth for stable phase locking.

Phase locking of diode lasers has already been achieved
by a number of authors [10-13]. However, in most cases,
the main goal was the quality of the lock (small RMS phase
error) more than the simplicity and reliability of the setup.
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In a frequency chain, on the other hand, the final RMS phase
error is likely to be dominated by the standard itself, while
simplicity and reliability assume primary importance.

This paper is intended to be a practical guide for those
who would like to build a simple and reliable OPLL for ap-
plications where residual phase noise is not critical. After a
short discussion of basic principles, for readers unfamiliar
with phase locking, we recall some equations from feed-
back theory, set our notation and derive several results for
the shape of the beat note. Later we discuss a simple design
procedure for an OPLL and a digital Phase and Frequency
Detector (PFD) with a very broad (+ 100 rad) phase de-
tection range. The PFD is then compared with a traditional
analog phase detector, showing that the larger RMS phase
noise is compensated by greater reliability and less strin-
gent requirements upon the minimum S/N ratio and loop
bandwidth. Finally, the theory is compared with experimen-
tal results, showing that, for a typical frequency chain, it
is possible to obtain good performance even with simple
sources of rather broad linewidth.

1 Basic principles

Phase locking is used in frequency chains to transfer the
definite frequency of a weak signal to a more powerful,
tunable source. The transfer may either be direct so that the
two frequencies are the same, or involve the addition of a
third, usually rf, intermediate frequency. The latter is usually
the more convenient, and often the more desirable.
Typically, in the first case, beams from the reference and
slave lasers overlap on a photodiode, whose output depends
upon the vector sum of the two field amplitudes and thus
upon the phase difference between them, showing a roughly
linear dependence for small errors. This is compared with a
reference level corresponding to the desired phase difference,
and the error is used to make a correction to the tunable slave
laser. If a frequency-offset is required (second case), then
the photodiode operates as a mixer and the resulting beat
signal is compared with a reference of the required frequency
using an electronic phase detector, whose output once again
corresponds to the phase difference; it is this signal which
is then fed back to the slave laser. The important feature, in
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relation to frequency chains, is that if the phase drift between
the two sources is eliminated, then long term measurements
of their frequencies must be the same.

In practice, the measurement time is finite, and the phase
noise (related simply to the frequency noise) must be reduced
to allow a frequency measurement of adequate precision.
This is not, in practice, a major hurdle. Unfortunately, phase
detectors operate correctly only within a finite range of phase
error; beyond this, control is lost and a whole cycle, or a
number of cycles, may “slip” between the reference and
slave lasers in a manner analogous to a chain slipping the
teeth of a cog. Since cycle-slipping leads directly to an error
in frequency, the phase error must be kept well within the
correct operating range of the phase detector. This requires
the attenuation of not just the low-frequency noise, but also
that up to quite high frequencies; this, in turn, requires the
construction of fast servo loops, which can be a significant
challenge.

Our approach has been to design a phase detector with
a substantially increased range of operation, which thus tol-
erates a larger phase error for which slower stabilization
circuitry is adequate.

2 A review of useful formulae

In this section we recall some formulae for later use. De-
tailed discussions of this subject are found in [14, 15] and
references therein.

We will use lower case for time domain signals s(t),
and upper case for their Fourier transforms, S(v), where
2rv = w, and w is the angular frequency. Since s(t)
is always real, |[S(v)|? is an even function of v. If c(t)
and P;(v) are the correlation function and the power spec-
tral density for the quantity f, it is convenient to use the
single—sided power spectral density, defined for v > 0 as
Plv) = P(v) + P(~v) = 2P(v), P}(-~v) = 0; in most
experimental situations negative frequencies cannot be mea-
sured, but their contribution to Px(v) is folded on the positive
axis. The Wiener-Khintchine theorem then takes the form
[14]:

Plw) =4 / ~ ce(t) cos 2mvt)dt 1))
0

ce(t) = / ~ P} (v)cos Qrvt)dy . )
0

A typical OPLL is composed of a Master Laser (ML), a
Slave Laser (SL), a Local Oscillator (LO), and a feedback
loop. The phase of the beat note between the two lasers
is compared with the phase of the LO and the derived error
signal is used to control the frequency of the SL. This system
can be described by standard feedback theory assuming the
instantaneous frequency difference between the beat note
and the LO to be the input variable i(t).

In our model, we consider a feedback loop composed of
four parts: a phase detector, a delay, a loop filter, and the
slave laser. If the Fourier transforms of the loop filter and of
the SL response are L(v) and D(v), then we can write the
Fourier transform of the output o(t) as:

ow) = 1

“1+60) (3

where
Gv)= D) L) exp (—27ivT) i,p . 4)
27iv

Here, 7 is the delay of the feedback loop and G, is the gain
of the phase detector, measured in V/rad. The explicit form
of D(v) and L(v) will be discussed in Sect. 4.

If O(v) is known, it is possible to derive other useful
quantities. We will need the mean-square phase error (?)
[here, () denotes the time average and (%) is the integral
with respect to time of o(t)] and the Allan variance o2(t):
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200y _ ® |OW)|? sin*(rvt)

g (t) —4/0 (27‘_)2 Wdl/ . (6)

Equation (6) does not define o2(t) in terms of the normal-
ized frequency y; the more conventional ag(t) is obtained
by dividing our value by the square of the laser frequency.

Another commonly measured function is the power spec-
trum P, (v) of the beat note (the rf power spectrum). Since
this is the only power spectrum we will use, we shall drop
the index . We note, that if c,(t) is the correlation function

for (%), the function 7(t) = c,(t) — c,(0) is given by:
oW .,

r(t) = —4/0 W sin“(wvt)dy . @

Recalling that, if ¢(t) describes a Gaussian process [15],

(exp [ip(t’ +1) — ip(t")]) = exp [r(®)] , ®)

we can apply the Wiener—Khintchine theorem to obtain:
(o0}
Plv—uy)=2 / exp [r(t)] cos 2mvt)dt , ©)
0

where 1 is the LO frequency. Equation (9) cannot be solved
generally, so we shall use an approximate relation between
|O@)|* and P(v—1v5). It can be shown [16] that for (?) < 1
and |v — vp| > A, where A is the HWHM of P(v — 1),

low)?
Qmv)? -
We also define the fraction of power in the carrier, =
PO)/(f*2 P(v)dv). If (¢?) < 1 then

n=exp (—(¢%) - (11)

In practice, the value of 7 from (11) is used as a figure of
merit even when (¢?) ~ 1.

P —wp) ~ |9W)|* = (10)

3 Calculation of the rf power spectrum

In this section, we use (7), (9) and (10) to derive some
results regarding P(v — 1) for free-running and weakly
locked diode lasers (weakly locked meaning that the servo-
bandwidth is much narrower than the beat note) in the pres-
ence of white, 1/f, and Lorentzian frequency noise. We
assume
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where the factor (27)? gives the noise spectral densities S;
in Hz?/Hz. For the free-running case |I(v)|?> = |O(v)|?. For
a weak lock we can neglect the delay and assume that L(v)
and D(v) are constant in (4). If G(v) = v, /iv, where v, is
the unity-gain frequency, then

2

2 _ 2
lO(V)| - II(V)I I/2 +V3 . (13)
We first discuss the case of pure white noise. For the free-
running case, P(v — 1) will be a Lorentzian with HWHM
I' = S,,. Alternatively, in terms of the single sided power
density SL, I' = wSL /2. In the presence of feedback, ex-
panding exp [r(¢)] in (9), integrating term by term, and fi-
nally setting, from (5), (p?) = mSy /1, we obtain:

P(v — vp) = exp(—(¢?))
X 6(1/ — )+ l i <902>n wn
0 i

- n! (vyn)?+ @ — 1p)?

] . (14

The line shape is composed of a §-function and a pedestal,
which is a series of Lorentzians. The series can be written in
terms of the confluent hypergeometric function | Fi(a, b, z)
as

l.jié <¢2>n W
T4l (un)? + (v — 1g)?
2 o s 2
_ <30 > 1F1d lemz' 10y, (4,0 >) +ee |, (15)
TV, 1 —1i6,

with 6, = (v — 1) /1. Using the asymptotic expansions for
1Fi(a, b, z), it can be shown, that when (v — 1) > 1, or
when (v—1p) < I" and v, < I, then P(v—uy) tends towards
the expected Lorentzian with a HWHM of I" = 7.S,.

Direct integration of (14) shows that the fraction 7 of
power in the d-function is given by (11). The contribution
of the series to P(0) is [exp (—(p?)) — 1]/7v, and can be
neglected when (?) < 1.

The free-running linewidth in the presence of white and
Lorentzian noise can similarly be written as:

exp (SLT/1) o= 1 Spr\"™
P — ) = exp (O 71;7r/ B Z n! <_VLL7T)
n=0

7T(Sw + SL) + nyy

[T(Sy +SL) +nv 2+ (v — 1p)? (16)

or, with 6y = (v — 19)/vL, u = Sum/v, and v = w(Sy +

SL)/vL,
P — vp) = —— (lFl(l’”+TewL+1’u)+c.c.> .oan
UL U+ 10y

The importance of the low-frequency noise is controlled by
u. When u < 1, P(v — 1) tends to a Lorentzian with
I' = n(Sy + SL), while for u > 1, the limit is again a
Lorentzian and I" = 7 S,,.

We do not try to solve the problem in presence of feed-
back. In most cases, however, it is possible to use the results
for white frequency noise by choosing the proper effective
Sw, depending on the value of u.
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If 1/f noise is considered, the integral in (7) diverges
at v = 0 for the free-running case. A low-frequency cut—off
at v = v, must be then introduced, which can be justified in
terms of a finite measurement time. After further approxi-
mations, the final result is a Gaussian with a HWHM that
depends on v, [17]. To derive a relation between the HWHM
of the power spectrum and S /¢, however, it is possible to
use (10). Following [18], we will assume

a? .
P —1p)=C(w) (m) ) (18)

where C(u) is the normalization constant, so that the total
power is equal to 1:

I'(p)

I U Tk 4
From (10), we obtain, for (v — 1) > a,

a2/.l.—1
[T()|* ~ (ZW)ZC(N)W . (20)

In the case of 1/f noise, we then have y =3/2 and Sy =
ma?. The relation between a and the HWHM A is A =
av2@/3) — 1.

If feedback is applied, we may assume the same form
for the rf spectrum, but let v, >~ 1.

4 A model for the loop

To determine the output spectrum O(v), we must measure
and make assumptions about the parameters and the func-
tions that appear in (4). Specifically, we start with a prelim-
inary hypothesis about the laser response D(v) and measure
all the other parameters while keeping the loop-filter char-
acteristics L(v) constant. We then try to design the optimum
L(v) under certain constraints. A description of the exper-
imental techniques used for measuring the loop parameters
of our diodes will be given in Sect. 6. Once O(v) is known
we can evaluate (¢?) and o(t) for our loop using (5, 6).

We are interested in D(v) only up to frequencies of the
order of the loop bandwidth, typically less than 10 MHz.
It is generally assumed [17] that in this region the physical
mechanism responsible for FM modulation is the variation
of the refractive index inside the diode-laser chip due to the
temperature change induced by the current, and in the region
of interest the response can be approximated by a single-pole
fall-off corresponding to a thermal time constant of a few
microseconds,

D) = Gg—2— . @21
iv+a
The actual values of o and G4 must be measured directly.
Typically, « is 100 kHz to 1 MHz and G4 is 1 GHz/mA.
To determine the free-running power spectrum |I(v)|?,
we have measured the beat note (Fig. 1), between two iden-
tical, weakly locked, grating-stabilized diode lasers and used
the results of Sect.3. Fitting a pure Lorentzian shows that
white frequency noise is a poor model and excess noise must
be added below 1-2 MHz in order to fit the rf spectrum. This
will be discussed in Sect. 6.
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Amplitude (dB)

-40 L L L
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Fig. 1. Beat note between two identical grating-stabilized diode lasers (av-
erage of 100 scans, resolution bandwidth 10 kHz, locking bandwidth 30
kHz). The solid line is a fitted form, assuming a Lorentzian and white
noise

Rp=R1 R2/(R1+R2)

y=1/(2 Rl C1)

B=1/(2mRp C1)
R2 G1l=Rp/R1
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Fig. 2. A pair of loop filters implementing the transfer function in (22)
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To evaluate the loop bandwidth, unity gain, and phase
margin, we need to consider the frequency range where
|G)[* =~ 1, which is usually above 2 MHz. We will as-
sume |I(v)|? to be constant in this region.

The simplest passive filter that allows us to widen our
loop bandwidth has the following transfer function:
L(Z/): 9 é .il/+7 ,

R~yw+p
where v < 3, G} < 1, and R is the resistor used for voltage
to current conversion. Figure 2 shows two possible imple-
mentations: the first is the standard phase-advance circuit
followed by R, while the second produces a current output
directly. The relations between the parameters in (22) and
the values of the components are added for convenience.

If we set v = a and B > 1/277, (4) can be approxi-
mated, for v < 1/277, by:

(22)

exp (—2imvT) 23)

K

GW)=w

v
where v, = G4G\G,/2mR is the unity-gain frequency. In
practice, since 3 can increase the loop noise, it should not
exceed 3-5 times 1/277.

The maximum loop bandwidth is limited by the phase
shift due to the delay. If we want a phase margin of about
30 degrees, we can set v, = 1/277, while the gain margin
is 20log(m/2) ~ 4 dB. For a more precise calculation, (4)
and a better model for |I(v)|? should be used.

A crude estimate of the phase error can be made, ne-
glecting low-frequency noise, letting (¢?) = S,,7I;, where:

o0
1
I = dr ~ 10.72 .
: 2/0 2 — 2z sin (z) + 1 z~ 1072 24)

RF — 5| Analog->TTL

Up Countt
Converter b (ounter
Out D/A Converter Adder Saturation
Logic
LO — | Analog->TTL

Down Counter

Converter

Fig. 3. Block diagram of the digital PFD. The timing diagram shows the
PFD output, with the adder initially storing N-1, for a rf frequency 10%
greater than the LO frequency

We could compute o(t) numerically but, for our Eurposes, a
simple approximation will suffice. We expand sin” 7wt in (6)
as an average value and two oscillating terms; since we are
interested in values of ¢ for which ¢t < 7, the contribution
of the oscillating terms is negligible. We then have:

o (t) ~ (¥ . (25)

2mt)?
This holds only if |O()[*/v? does not diverge at v = 0.

If the loop is not ideal, but has an internal noise source
n(t), (3) becomes:

W) Nw)G)
V=176t T+ow)

The noise is faithfully superimposed on O(v) by the feed-
back loop, since it is interpreted as an error signal. The most
common kind of noise is white phase noise due to the fi-
nite S/N ratio of the beat note. A simple assumption is to
set 2mv |[N(v)| ~ 1/r, where r is the S/N ratio in 1 Hz
bandwidth.

With G(v) as in (23) and |I(v)|* = 27)* S,, we obtain:

1
(%) =1, (Swr + ﬁ> : @7

showing that, if noise is included, there is an optimum band-
width which minimizes (¢?), giving (p?) with respect to 7
as 21/ Sy/r* at T = 1/4/72S,. In practice, however, both
Sy and 7 are given and v, is determined by the required
phase or gain margin. One can only be careful and check
that the main contribution to (p?) comes from the first term
in (27).

(26)

5 Non-ideal phase detectors

So far we have assumed a perfect Phase Detector (PD), i.e.,
a device whose output is proportional to ¢(t). This is not
realistic: when the lasers are in lock, the phase error will
not vary by more than a fraction of a radian, but, as soon as
the SL goes out of lock, ¢ can easily vary at a rate of 10®
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Fig. 4. Electrical scheme of the digital PFD. The analog-to-TTL converters and the analog front-end after the DAC are not shown

rad/s. Any practical PD should, therefore, reach a limiting
output, indicating in which direction the phase is growing.
This constant voltage can then be used by some slow control
system (e.g., the PZT driver of the SL) to relock the lasers.

The most common kind of PD, the analog mixer, has
an output proportional to sin ¢(t); it is monotonic for only
m rad and can be assumed linear only for ¢ < 1 rad. Be-
yond the monotonic range, it does not saturate but reverses
sign. These poor characteristics mean that, unless (p?) is
kept very small, there will be a significant probability of the
instantaneous value of ¢(t) exceeding 7 /2; this will change
the sign of the feedback signal and lead eventually to a cycle
slip. Computing the average time between two cycle slips
ts is not easy [19] but a simple expression can be stated [4]
for a first-order loop:

2
Lo Te 2/ (e?) 08)
4y,
It is clear that, when (¢?) =~ 1, the frequency error due to cy-
cle slips is too large for a frequency chain, even though o(t)
in (25) is a fraction of a Hz at t = 1 s. For broad sources,
then, it would be very useful to remove this limitation.
Digital PDs can easily provide a linear output and wider
phase-detection range. Converting the beat note and the LO
signal to digital levels and applying them to the inputs of
an XOR gate gives, after a low-pass filter, a linear PD with
the same monotonic range as an analog one. Dividing both
signals by n before the XOR increases the range to n.
Saturation can then be obtained with some extra components

and, indeed, single-chip devices implementing a 47 Phase
and Frequency Detector (PFD) are available.

A dividing PFD, however, increases the implicit loop
delay, limiting the maximum loop bandwidth. We define the
implicit delay as 7; = 1/14. It is easy to see why any product
detector used as a PD forces a minimum delay: the useful
information is contained in the difference signal, while the
sum must be filtered out by a low-pass filter with a corner
frequency of the order of 1. Expanding its transfer function
to first order in v/1y shows that this filter is equivalent to a
delay 71 for v/vy < 1. A digital PD can sense only toggles
of the input signals and, therefore, measures the beat-note
phase every half cycle of the LO. If images are to be rejected,
according to the sampling theorem, the bandwidth must be
limited to vg. This fixes 73. Moreover, we have not only an
upper limit on the loop bandwidth but also a true delay;
on average we must wait a quarter of a cycle of the LO
frequency before detecting a phase variation.

Another possible digital PD [20], is a simple “phase
counter’”: we add +1 (—1) to a register for each cycle of
the beat note (LO). The register value is then converted to
an analog signal and filtered. Since a simple counter with up
and down clock inputs will not operate properly in the pres-
ence of “simultaneous” transitions, the safest way to achieve
this is to sum the outputs of an up—counter connected to the
beat note and a down—counter connected to the LO (Fig. 3).
The linear range is limited only by the number of bits in the
counters and the adder; saturation is accomplished by rec-
ognizing the “all zeroes” and “all ones” states at the adder
output and blocking the input of the appropriate counter. A
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typical timing diagram is shown in the lower part of Fig. 3;
it is apparent that this circuit not only correctly counts whole
cycles of phase error, but with suitable filtering at the output
also gives an appropriate linear response.

Our circuit, using 6 standard TTL ICs (Fig. 4), has 5
bit counters (a D-type flip—flop plus a 4 bit synchronous
counter) and a 4 bit adder. The linear range is then £327
(about £100 rad). The DAC is simply 4 resistors and an
OP-AMP. The sensitivity is 25 mV/rad and the delay due
to the electronics is about 50 ns including the analog—to—
TTL converter. The maximum LO frequency is 70 MHz and
is limited by our converter; with faster components (using
ECL logic) this could be extended up to 200 MHz.

Additional advantages of this digital PFD, in compari-
son with an analog one are: calibrated sensitivity, broader
capture range and sideband selection (an analog mixer can
lock the SL at +u4 from the ML, which cannot happen with
this PED). On the other hand, a digital PFD will always be
slower (higher 7;) and noisier since it is sensitive only to the
edges of the input signals and not to the average integrated
over one period.

6 Experimental results

For our experiments, we have used MQW diode lasers (STC,
model LT50A-03U) at 850 nm, stabilized with optical feed-
back from a 1800 lines/mm grating, placed 15 mm from the
laser, mounted in Littrow configuration. The divergence of
the beam is compensated with a collimating lens giving a
numerical aperture of 0.45. The typical threshold current It
is about 32 mA and the operating current is between 50 and
60 mA. The temperature of the diode is stabilized to within 1
mK using a Peltier element. In order to avoid unwanted op-
tical feedback, a double-stage optical diode providing 60 dB
of isolation is used for each laser. After being combined at a
beam splitter, the ML and the SL beams are focused onto an
avalanche photodiode and the resulting signal is then ampli-
fied by 54 dB using two cascaded amplifiers. The LO signal
is provided by a rf synthesizer.

As a phase detector, we have used both an analog mixer
and the digital PFD. The output of the PD is split into two
paths: the first is used to control the injection current via
the loop filter; the second is directed, after an integrator, to
a low voltage PZT used to tilt the grating. This part of the
loop provides a dc-coupled feedback path, allowing broad
frequency tunability. The setup is illustrated in Fig. 5.

The power spectrum of the beat note between two iden-
tical grating-stabilized diode lasers is shown in Fig. 1. The
lasers were weakly locked, using the digital PFD and just
a resistor as the loop filter, giving a loop bandwidth of
~30 kHz. The data are the average of 100 scans of the
spectrum analyzer. The FWHM of the rf spectrum is 570
kHz. A fit with a simple Lorentzian does not give a satis-
factory result, showing that the spectrum is broadened by
low-frequency noise. Better agreement is obtained either by
fitting a Lorentzian in the wings only and (18), with . = 3/2,
up to ~ 2 MHz (1/f low-frequency noise), or by using (17)
(Lorentzian low-frequency noise). In the first case, we ob-
tain S, = 48 x 10° Hz?/Hz and S;; = 0.43 x 10'> Hz?,
so that the 1/f corner is at about 1.4 MHz. In the second,

B.S.
Master Avalanche
e | ] Tsolator 4 Photodiode
Slave | | Isolator / Amplifier
Laser
PZT
Phase
Integrator
Detector
Current
Loop Local
Filter Oscillator

Fig. 5. Experimental setup of the OPLL

Sy = 25 x 10° Hz2/Hz, S|, = 100 x 10® Hz2/Hz while it has
been assumed v, = a = 400 kHz (see next paragraph), since
Lorentzian low-frequency noise can be thought of as exter-
nal white noise (i.e., current fluctuations) filtered by D(v).
The second set of parameters allows an easier comparison
with the experimental data, since it does not require the in-
troduction of a low-frequency cut—off, and is our preferred
choice. The rf spectrum calculated in this way is also shown
in Fig. 1.

The FM response D(v) has been measured in two dif-
ferent ways. In the first experiment a solitary laser (without
grating) was tuned to the side of a Cs absorption line, and
the intensity modulation of the laser beam measured as a
function of the injection-current modulation using a network
analyzer for frequencies up to 50 MHz. A similar measure-
ment away from resonance allowed the AM response to be
determined, and hence the pure FM transfer function to be
derived. The results, after correction for the photodiode re-
sponse, cable length and diode laser input network are shown
in Fig. 6. In the second experiment, two grating-tuned lasers
have been phase locked with a small servo bandwidth. By
measuring the output of the PFD versus current modulation
of the master laser we have obtained another estimate for
D(v). In both cases, we obtained a corner frequency o be-
tween 350 and 400 kHz.

G4 has been measured by simply tuning the current
and observing the laser output with a scanning Fabry—Perot:
G4 = 800 MHz/mA. If we assume that Sp is due to current
noise, we derive a very reasonable value of 0.4 nA/+/Hz for
the current noise density of the power supply.

Our estimate for the delay was 7 = 20 ns for the analog
PD and 7 =~ 90 ns for the digital circuit. With these numbers,
we have then designed loops for both an analog and a digital
PD, according to the procedure described in Sect. 4.

For the analog PD, using a mixer with a sensitivity of
about 460 mV/rad and a LO frequency of 50 MHz, we have
used a loop filter as in Fig. 7 with a loop bandwidth of about
8 MHz. The recorded beat note is shown in Fig. 8. We have
measured 7 from direct integration of the data in Fig. 8
for frequencies up to 25 MHz from the carrier. Since, for
higher frequencies, |O(¥)|?> ~ |I(v)|?, the power in the wings
can be estimated by simply integrating a Lorentzian. Letting
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Fig. 6. Injection current FM phase and amplitude response for a free-running
laser. The solid lines were computed assuming a zero at 70 kHz and two
poles at 20 and 400 kHz. For our purposes only the last pole is relevant
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Fig. 7. Loop filters used for the analog PD and the digital PFD. The first is
a simple phase-advance ac coupled to the diode laser. The second has an
extra notch filter tuned at 1/)/2 and a capacitor to increase the low-frequency
gain. The resistor in parallel to the phase advance improves relocking

Sy =48 x 10* Hz*/Hz, we get 1) = 0.96, which corresponds
to a value of (¢?) of 0.04 rad®. Using (5) and the fitted
parameters for white and Lorentzian frequency noise, we
obtain the calculated value (¢?) = 0.035 rad?. The locking
time, supposing optimum laboratory conditions, can be of
the order of one hour. By adopting more complicated loop
filters and increasing the LO frequency, it is possible to
obtain a loop bandwidth in excess of 20 MHz.

For the digital PFD, since the delay is much larger, we
have to limit the bandwidth to about 1.7 MHz (Fig. 9). The
loop filter is again shown in Fig. 7. We have added to the
simple phase-advance circuit a notch filter tuned to /2,
which is the main spurious component generated by the cir-
cuit. In addition, an extra resistor provides a dc path that
makes relocking easier, and a capacitor increases the low-
frequency gain. DC coupling of the injection current can
damage or destroy the laser and therefore must be done care-
fully.

With this setup, we measured 1 = 0.83, (p?) = 0.19
rad®, while the computed value for (¢?) is 0.15 rad2. We also
observed |®!(v)|? under lock conditions up to 100 kHz using
a FFT analyzer connected to the output of the PFD. The
result was white phase noise with S, ~ 1 x 1077 rad*/Hz.
The expected value can be obtained from the low-frequency
limit of the integrand in (5): S, = (S.+Sy)/v2, from which
S, = 0.43 x 1077 rad®/Hz. With the digital PFD, the locking
time is basically limited by the drift of the lasers, which, after
a few hours, require some adjustment of the injection current
in order not to jump to a different longitudinal mode. The
tolerance to acoustic noise and vibration is much better than
with the analog PD.

In order to reduce the delay, we put both an analog and
a fast digital (a simple XOR gate) PD in parallel with the
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Fig. 9. Closed-loop beat note using the digital PFD. The resolution band-
width is 10 kHz

PFD. In this way we add to the linear phase response an
oscillatory one, either a sine wave or a sawtooth. If the gain
of the fast PD is not too high, the overall response is still
monotonic but it is stepped. Properly adjusting the offset at
the input of the integrator driving the PZT, it is possible
to use a steep part in the curve. Using the XOR, we were
able to increase the bandwidth to about 3 MHz. The analog
mixer offered even better performance, but we felt that the
additional complexity was unnecessary. Although the phase
error is decreased, the extra PD reduces the reliability of the
setup.

After some time, depending on the stability of the PZT
voltage, the detector response will drift away from the steep
slope. It is then necessary to monitor the beat note and,
periodically, to adjust the PZT offset.

7 Applications in a frequency chain

The possibility of slip—free phase locking which can with-
stand a significant RMS phase deviation (p?) allows the
realization of OPLLs, suitable for metrological applications,
where the loop bandwidth is a fraction of the linewidth of
the sources. To prove this, we have measured o(t), using
artificially reduced values of v,. v

We discuss, first, the results to be expected. If v, is small
enough, we can neglect the delay and D(v) in (4); moreover,
the loop filter can be just a resistor. The loop is then of the
first order and we have (¢?) = m(SL + Sy)/vs, while o%(t)
is given exactly by (25).

For five values of v, we measured o(t) for eight different
t, from 0.05 to 10 s in a 1-2-5 sequence. The data were then
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Fig. 10. Measured value of K(vy) vs vy. The solid line was calculated

using (25)

fitted with o(t) = K(1,)/t, thereby determining the value of
K(w,). In Fig. 10, K(v,) is plotted versus v, together with
the curve computed using (25) and the values of Sy, and S,
determined from the rf spectrum. These data are consistent
with the closed-loop measurement of S,: they both show,
however, that at very low frequencies our estimate of the
frequency noise is about a factor 2 too small.

Only in the case v, ~ 320 kHz, where (p?) ~ 1.2,
could we clearly observe a carrier in the beat note, while
for smaller values of v, we obtained data similar to Fig. 1,
which was actually recorded while measuring the second
point in Fig. 10.

We see from Fig. 10 that, with v, ~ 68 kHz, it is possible
to have o(1) ~ 1 Hz, which means oy(1) ~ 2.5 x 10~!5 for
lasers at 850 nm. In contrast, letting (¢?) ~ 5.7, 1, = 68 kHz
and using (28) we have, for an analog loop under the same
conditions, a cycle slip every 16 us, so oy(1) ~ 1.7 X 10710,
This “mild” phase locking is not simply easier and accept-
able; it could even be desirable in chains where the mul-
tiplied phase noise of the low-frequency stages produces a
larger linewidth than the slave laser or other transfer oscil-
lators.

This tolerance to phase fluctuations can also be used for
locking on low S/N beat notes. If we set 7 for the minimum
(¢?) in (27), then, with S, ~ 100 kHz and (p?) ~ 6, 7 could
be as low as 1130 with v, = 57 kHz (i.e., 21 dB in 10 kHz
bandwidth). Because the analog—to-TTL converter requires
a minimum S/N ratio to operate properly, these numbers are
not realistic. Although quantitative measurements are rather
difficult, our feeling is that the digital PFD can operate with
a S/N 10 dB less than the analog circuit in our typical exper-
imental conditions. The reduction in minimum-required S/N
could be very useful in schemes where weak beat notes are
expected, as in optical comb generators or ultrafast detectors.

8 Conclusions

We have outlined an easy design procedure for OPLLs that
gives acceptable agreement between computed and actual
values. Using this procedure, we have built an OPLL with
a bandwidth of about 8 MHz, obtaining a residual RMS
phase noise of 0.2 rad and 0.96 of the power in the carrier,
starting from two lasers with a beat note FWHM of more
than 500 kHz. By choosing a higher LO frequency, the loop
bandwidth could be at least 15 MHz.

Using a digital PFD with a linear range of more than
4100 rad and a capture range of 70 MHz, it was necessary
to reduce the loop bandwidth to less than 2 MHz in the sim-
plest configuration or to 3 MHz in a slightly more complex
case; these could be improved by adopting faster electronics.
The disadvantages of the digital PD are compensated by the
stability of operation (a locking time. of hours is routinely
achieved), the absence of cycle slips, and the tolerance of
small S/N ratios.

We have measured the Allan variance o(t) of weakly
locked lasers, where the loop bandwidth is a fraction of the
linewidth. With a bandwidth as low as 15 kHz, a fifteenth of
the HWHM of our beat note, we observed oy (t) = 8 x 10713,
The results agree with our simple theory and show that,
without cycle slips, it is possible to obtain values of o(t)
acceptable for a frequency chain. This opens the possibility
of using broader (i.e., simpler or higher power) sources for
frequency measurements in the visible, based on schemes
such as divider stages or optical comb generators.
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