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Abstract
We describe an atom trapping mechanism based upon differential optical pumping between
metastable hyperfine states by partially displaced laser beams in the absence of a magnetic
field. With realistic laser powers, trap spring constants should match or exceed those typical of
magneto-optical traps, and highly flexible tailored trap shapes should be achievable. In a
proof-of-principle experiment, we have combined a 1D implementation with magneto-optical
trapping in the orthogonal directions, capturing ∼ 104 85Rb atoms.

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical atom traps based on the force accompanying the
absorption and spontaneous re-emission of radiation are
vital tools in atomic physics. The most widely used is
the magneto-optical trap (MOT) [1], and many experiments
can be performed directly on the atom cloud that it forms [2, 3];
when optical dipole or magnetic traps are required, the
MOT is usually used for the initial loading into a generally
conservative trapping potential [4, 5]. A few alternatives to
the MOT have been proposed [6–8], each with its advantages
and disadvantages. Here, we propose a further alternative,
whereby the trap depends upon differential pumping between
metastable hyperfine states according to the spatially varying
balance of intensities between different wavelengths of
illumination. This metastable optical pumping (MOP) trap
may be directly combined with Doppler cooling, but lacks
some of the enhanced cooling mechanisms associated with the
MOT and is experimentally more complex when implemented
in more than one dimension. However, because it depends
upon a spatially varying optical rather than magnetic field, it is
more readily sculpted and capable of stronger spring constants.
It can in principle operate between the hyperfine states of any
atom with a non-zero nuclear spin, or between other states that
are sufficiently long-lived.

The principle underlying our trapping scheme is that if
two laser beams address transitions involving two different,

long-lived energy levels, then scattering from one beam can
be elevated over scattering from the other by optically pumping
the atomic population into the appropriate state. This allows
the optical Earnshaw theorem [9] to be circumvented and an
optical atom trap to be created.

Figures 1 and 2 illustrate the key elements in our scheme,
which relies upon the spatially dependent balance between
two opposing optical forces, reflecting in turn the spatial
dependence of the populations of the metastable levels A and
B. Permitted electric dipole transitions exist between states
C and A, D and A, D and B, and E and B. Atoms in the
metastable state A experience an average scattering force to
the right from the power imbalance between the left and right
travelling beams tuned to the A–C transition, while atoms
in the alternative metastable state B experience an average
scattering force in the opposite direction from the imbalance
between the beams tuned to the B–E transition. Pump beams
A–D and B–D, which propagate across the scattering beams
and are individually balanced to exert no average force,
provide spatially dependent transfer of population between the
metastable levels. By shaping the pump beams using a mask or
spatial light modulator (SLM), the magnitude and direction of
the net force upon the atoms may be tailored to the desired trap
shape with a near-wavelength resolution that is several orders
of magnitude finer than may usually be achieved by shaping
the magnetic fields of a MOT.
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Figure 1. Pumping scheme for a MOP trap. The leftmost part shows
a generalized level scheme and allowed transitions between the
metastable levels A, B and upper radiative levels C, D and E. The
corresponding levels of 85Rb used in our experiments are shown to
the right, the 5P3/2 F = 2 and F = 3 states together corresponding to
the generalized level D.

Figure 2. Beam geometry for a 1D MOP trap. The transition
addressed by each beam is that shown in figure 1 by the same arrow
colour and border. Larger arrows for the horizontal ‘pushing’ beams
indicate higher intensities. The intensity distributions of the vertical
‘pumping’ beams determine the force profile of the trap, although
each is balanced against its counter propagating twin to eliminate
radiation forces from the pumping beams themselves.

2. Experimental implementation

In our experimental implementation using atomic 85Rb, we
use the 5S1/2 F = 2 and F = 3 ‘ground’ hyperfine states as the
metastable levels A and B respectively and the 5P3/2 F = 1 to
F = 4 states as the upper radiative levels C, D and E, as shown
in figure 1: the F = 2 and F = 3 states together correspond
to level D and allow favourable branching ratios to be chosen
for the respective pumping beams. All our beams are detuned
slightly to the red of the relevant atomic transitions to allow
them to perform the additional function of Doppler cooling.

For practical convenience, we combine the functions of
the A–C rightward pushing beam and the A–D pumping
beam by using a single rightward-directed beam tuned to the
A–D (5S1/2 F = 2 ↔ 5P3/2 F = 3) transition. In the absence
of the other pumping beam (B–D), this concentrates atomic
population in the 5S1/2 F = 3 ground hyperfine state B,
where atoms experience only the leftward force exerted by
the pushing beam pair B–E, which is tuned to the 5S1/2 F
= 3 ↔ 5P3/2 F = 4 transition and which experimentally
corresponds to a bright beam incident from the right and its
attenuated reflection. Where the atoms are also illuminated by
the pumping beam B–D, tuned to the 5S1/2 F = 3 ↔ 5P3/2 F =

(a) (b)

Figure 3. Images of the atom clouds formed by a 1D MOP trap
combined with 2D magneto-optical trapping in the orthogonal
directions. In (b) a thin wire was placed across the centre of the B–D
beam, casting a geometric shadow into the trapping region that split
the B–D beam in two and thus generated two adjacent trapping sites
separated by a small area of reduced atom density. The dotted red
lines show the nominal axis of the MOP trap.

2 transition, atoms may be pumped into the ground hyperfine
state A, where they experience a rightward force due to the
A–D beam that can overcome that due to scattering of the B–E
pushing beam. The net force upon the atoms depends upon the
balance between the metastable state populations and hence
upon the local intensity of the B–D pumping beam: where this
is high there is a net force to the right, where it is weak the
net force is to the left, and the trap centre forms where the
net force is zero on the right-hand edge of the B–D pumping
beam.

As a proof-of-principle experiment, we combined a two-
dimensional magneto-optical trap, usually used to bring an
atom cloud close to a microstructured surface, with a one-
dimensional MOP trap in the orthogonal direction. All beams
along the trapping axis of the MOP trap were linearly polarized
to eliminate magneto-optical forces in this direction. Around
104 85Rb atoms were captured—about a third of the number
obtained with a full 3D MOT in this configuration [10]. The
trapped atom cloud is shown in figure 3(a). To demonstrate the
potential for sculpting of the trap geometry, a thin wire was
placed across the centre of the B–D beam, casting a geometric
shadow into the trapping region and thereby splitting the B–D
beam in two, thus creating two adjacent trapping regions as
shown in figure 3(b).

The axis of the MOP trap was nominally along the vertical
direction in figure 3, where it is shown by the dotted red lines,
and figure 4 gives quantitative data for the two-dimensional
atom density as a function of position along the axis of the
MOP trap both with and without obstruction of the B–D beam.
As the depth of field of our imaging system was large compared
with the dimensions of the atom cloud, the measured atom
density is integrated along the direction normal to the plane of
the images in figure 3. The extent of the atom cloud was slightly
greater along the axis of the MOP trap than in the orthogonal
direction, but this results from the specific conditions used in
our experimental implementation and is not reflective of any
fundamental limitation.

By releasing and subsequently imaging the trapped atoms,
the temperature of the cloud in the hybrid trap was found to be
93±9 μK. This process also revealed that the one-dimensional
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(a) (b)

Figure 4. Two-dimensional atom density as a function of position along the axis of the MOP trap, for the atom clouds shown in figure 3. In
(b) a thin wire was placed across the centre of the B–D beam, casting a geometric shadow into the trapping region that split the B–D beam in
two and thus generated two adjacent trapping sites separated by a small area of reduced atom density.

velocity distribution along the axis of the MOP trap was not
significantly different from that along the orthogonal axis.
When magneto-optical trapping was employed in all three
dimensions, the temperature of the resulting cloud was found
to be 110 ± 40 μK [10]. Both of these results are consistent
with our expectation that a MOP trap should exhibit lower
levels of sub-Doppler cooling than a conventional MOT, as the
same is true of the non-standard MOT employed in this work.
We would therefore expect a full, three-dimensional MOP trap
to produce an atom cloud with a temperature similar to that
measured in our hybrid trap.

In addition to ensuring that all beams propagating along
the axis of the MOP trap were linearly polarized, we carried
out a control experiment to verify that our results could
not be explained by residual magneto-optical trapping. If
atom trapping had been occurring via a mechanism that
was not dependent on optical pumping, then it should have
been possible to obtain similar results when the B–D and/or
A–D beams were replaced with beams addressing the B–E
transition, provided that the optical power in these beams
was correctly adjusted so as to restore the original balance
of radiation pressure forces in the trapping region. This
experiment was carried out and, despite careful observation
during an extensive scan of the beam powers, no trapping
was seen when either the B–D or A–D beam was replaced
with light addressing the B–E transition. To ensure that the
replacement beams occupied the same spatial modes as the
original beams, they were conveyed to the experiment through
the same single-mode optical fibres, with no change in the
alignment of the output couplers.

3. Theoretical analysis

To gain an approximate quantitative understanding of the
mechanism, we model the atoms as five-level systems
governed by a set of rate equations, with stimulated and
spontaneous transition rates between, for example, states E
and B given by τEBIEB and �EB respectively, where IEB

is the intensity of the laser light tuned to the relevant
transition. Transition rates between other pairs of states are

labelled similarly. The five relevant levels in our experimental
implementation are A, B, E and the two available D states,
which we shall label D2 and D3 according to their angular
momentum state F = 2 or F = 3 in the subsequent discussion.
We ignore the coupling of the beams to non-target transitions
and neglect the atomic coherences which, if the lasers are
detuned by the order of a linewidth for Doppler cooling,
are unlikely to play a significant role—theoretical models
that ignore atomic coherences have been shown to accurately
predict experimental results under similar circumstances [11].
As the timescales associated with motion within the trap are
much longer than those associated with optical pumping, we
use the steady-state populations and time-averaged forces
to determine the trap properties. We derive the stimulated
transition rates by considering the steady-state solution of the
optical Bloch equations for a two-level system characterized
by a spontaneous decay rate �, when illuminated by a beam
of detuning δ and intensity I, with Rabi frequency �, and
comparing this to the steady-state populations in a simple
rate equation model. Equating the results for the upper state
population, we obtain

�2/4

δ2 + �2/2 + �2/4
= τ I

2τ I + �
, (1)

and therefore, defining the dipole matrix element 〈E|x|B〉
between two levels as XEB, we obtain

τEB = �2
EB�EB

4IEB
(
δ2

EB + �2
EB/2

) = e2|XEB|2�EB

2�2cε0
(
δ2

EB + �2
EB/2

) (2)

and similar expressions for the other transitions. The rate
equations governing the system are then:
dE

dt
= (B − E)τEBIEB − E�EB, (3)

dD3

dt
= (A − D3)τD3AID3A − D3�D3B − D3�D3A, (4)

dD2

dt
= (B − D2)τD2BID2B − D2�D2B − D2�D2A, (5)

dB

dt
= (E − B)τEBIEB + (D2 − B)τD2BID2B + E�EB

+ D3�D3B + D2�D2B, (6)
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Figure 5. Time-averaged z component of the radiation pressure
force on an atom as a function of its position on the z-axis for a
one-dimensional MOP trap based on the scheme shown in figures 1
and 2 and the parameters given in (9)–(12). The origin is taken to be
on the axis of the B–D beam.

and
dA

dt
= (D3 − A)τD3AID3A + D3�D3A + D2�D2A, (7)

where A–E represent the populations of the states A–E shown
in figure 1. Setting all the time derivatives to zero and solving
these equations yields the steady-state populations of the five
levels, as described in the appendix, from which the time-
averaged force on an atom may be found to be

F = (Bs − Es)τEBIEBpEB + (As − D3s)τD3AID3ApD3A

+ (Bs − D2s)τD2BID2BpD2B, (8)

where pEB etc are the (vector) mean photon momenta
associated with scattering of the corresponding laser beams
and the subscript s indicates the steady-state populations.
Substitution of some realistic experimental parameters allows
comparison of the restoring force and its gradient in the MOP
trap with values typical of a MOT. For the one-dimensional
trap of figure 1, with 10 mW each in 3 mm diameter beams
and 30% attenuation of the B–E beam on reflection, detunings
of ∼2�, and with the pushing beams propagating along the
z-axis, we hence have beam parameters

IEB(x, y, z) = 1.7I0exp
[ − 2(x2 + y2)/r2

0

]
, (9)

ID3A(x, y, z) = I0exp
[ − 2(x2 + y2)/r2

0

]
, (10)

ID2B(x, y, z) = 2I0exp
[ − 2(x2 + z2)/r2

0

]
, (11)

pEB = −0.18h

λ
ẑ, pD3A = h

λ
ẑ & pD2B = 0, (12)

where I0 = 2.8 × 103 Wm−2 and r0 = 1.5 mm. Using the
85Rb parameters from [12] and assuming the trapping light
to be unpolarized, we hence obtain the trapping force profile
shown in figure 5, which shows the trap centre to be about
1.6 mm from the axis of the B–D laser beam and the trap to
have a spring constant around 4×10−18 Nm−1. This is one
or two orders of magnitude greater than the spring constant
in a typical MOT, which is proportional to the magnetic field
gradient about the trap centre and is therefore constrained by

Figure 6. Proposed beam geometry for 2D trapping via
time-multiplexing. The pairs of opposing ‘pushing’ beams would
only be active along either the x- or y-axis at any given time, with
switching between these beams being achieved, for example, via the
use of a Pockels cell and polarizing beam splitter. The spatial light
modulator (SLM) would be used to switch the intensity profile of
the ‘pumping’ beam, with simultaneous sculpting of the A–D and
B–D beams being possible through, for example, the use of distinct
spatial regions of the SLM.

practical rather than fundamental considerations, usually to
something of the order of 10−19 Nm−1 or below [13].

The trap described thus far operates in just one dimension,
as the balance of forces within different pushing beam pairs
can only be independently modified if the pushing beam pairs
address distinct pairs of metastable levels. Three-dimensional
trapping would therefore be possible if a third metastable level
were included in the pumping scheme. However, the most
straightforward extension to two and three dimensions will be
by time-multiplexing, as illustrated schematically in figure 6,
whereby independent one-dimensional traps operate along
orthogonal axes, with high frequency switching of the laser
beams to alternate between the separate traps. The intensity
profile of the pumping beams in two or three-dimensional traps
could be set using a single 2D SLM if this switching were
synchronized with the SLM frame-update frequency, which
would also facilitate dynamic adjustment of the trap shape.
A similar time-multiplexing scheme, in which alternation
between two 2D MOTs results in a full, 3D MOT, has recently
been demonstrated experimentally [14]. It may also be possible
to generate an interesting range of trapping geometries by
using Laguerre–Gaussian or other ‘exotic’ beam modes [15]
for the pumping beams.

4. Applications and conclusions

One potential application of the MOP trap is to experiments
where a particular atom density distribution is required, for
example for the efficient loading of an array of conservative
atom traps of the type discussed in [16, 17]. It might also be
helpful to combine the large spring constant and highly flexible
shape of the MOP trap with the efficient cooling and loading

4
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of a MOT in order to obtain a very high density of trapped
atoms. A significant advantage of the MOP trap, however,
is that it requires no magnetic field or field gradient, and is
therefore compatible with trapping near to magnetic materials
and structures that would disturb a conventional MOT. The
absence of a magnetic component also allows the trapping
potential to be modified more rapidly than in a MOT, where
inductive effects usually place a practical limit on the rate at
which the magnetic field can be altered. Furthermore, as the
trapping mechanism does not rely upon population transfer
between Zeeman sublevels, MOP traps share with those of [8]
the option to spin-polarize the atom cloud to some degree if
required.

Zeeman-assisted slowing and Sisyphus cooling are not
inherently present in a MOP trap as they are in a MOT; this
means that a MOP trap is likely to produce a smaller atom
cloud with a higher temperature than that generated by a typical
MOT. The experimental complexity is also greater for multi-
dimensional traps. However, as the optical polarization plays
no role in the MOP trapping mechanism, there is no reason
why, in the presence of an additional magnetic field, the beam
polarizations could not be chosen so as to promote sub-Doppler
cooling for lower temperatures and higher loading rates.
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Appendix

Given here are the full steady-state solutions to the rate
equations for the five-level system. In order to simplify the
formulae we introduce the following notation:

K1 = τEBIEB

τEBIEB + �EB
, (A.1)

K2 = τD3AID3A

τD3AID3A + �D3B + �D3A
, (A.2)

K3 = τD2BID2B

τD2BID2B + �D2B + �D2A
, (A.3)

and

K4 = −K3�D2A

�D3AK2 + (K2 − 1)τD3AID3A
. (A.4)

For the steady-state populations of the five levels we then
obtain:

Bs = (1 + K1 + K2K4 + K3 + K4)
−1, (A.5)

Es = K1Bs, (A.6)

D3s = K2K4Bs, (A.7)

D2s = K3Bs, (A.8)

and

As = K4Bs. (A.9)

Combining these with (8)–(12) allows the derivation of
a full expression for the (time-averaged) force as a function
of position, F(x, y, z). Once this is established, the trap centre
can be found by setting F(x, y, z) = 0 and solving for the
coordinates at which this equality holds. It is then possible to
calculate the spring constant along a given axis by computing
dFi
dxi

∣∣
∣
trap centre

.
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