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A Guide to Laser-Induced Fluorescence Diagnostics in Plasmas 

T.G.M. Freegarde and G. Hancock 

Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, 
U K. 

Abstract. A brief guide is presented for the use of laser induced fluorescence (LIF) as a diagnostic 
for reactive species in plasmas. The technique can determine concentrations, energies, and kinetics 
of atoms, radicals and ions, and can also be used to measure the fields which influence the motion 
of the charged particles. Measurements can be made in a spatially selective fashion within the 
plasma reactor, and in a way which is non-invasive. The review gives examples of all these types of 
measurements, with emphasis on how quantitative information can be extracted from the LIF 
signals. Guides are given to the limits of species detectivity, and to the pitfalls which need to be 
avoided if the technique is to be used reliably. 

1. INTRODUCTION 

An understanding of the physics and chemistry of plasmas requires information on identities, concentrations 
and energies of the species present - atoms, ions, electrons, radicals, molecules. This informationneeds to be 
quantitative, spatially resolved with respect to the active area of the plasma, and needs to be carried out in a 
fashion that does not disturb the plasma. If the plasma can be modulated then time resolution (on a scale 
which may run from seconds to ns) will provide additional information. No single technique can achieve all 
of these requirements, and a list of the various ways in which information of this kind has been gathered 
would probably encompass all techniques used in species diagnostics. 

Plasmas glow, and much can be learned from observations of the wavelength resolved emission [I]. 
Emission reveals properties of the excited species, and is generally used in the visible and UV regions to 
observe electronically excited quantum states. Emission of course does not reveal the behaviour of the 
ground states of the species, which in most plasmas (and certainly in the low temperature plasmas used for 
materials processing) are in concentrations orders of magnitude higher than those of the excited states, and 
which are generally the major species responsible for the technologically important phenomena such as 
plasma etching, deposition or ion implantation. All ground state atoms, molecules and ions (with the 
exception of H') can absorb light in transitions between eigenstates, and hence are detectable by this effect. 
Measurement of the absorption (the fraction of the incident light absorbed by the species) gives the 
concentration of the absorber directly, and is an extremely general technique, but suffers two drawbacks. 
First, the absorption is necessarily measured over the whole of the path of the interrogating light beam, and 
thus may mask spatial inhomogeneities. This can be overcome by viewing different paths through the 
plasma and using suitable inversion techniques to reconstruct the spatial variations in species concentrations. 
The second disadvantage is one of detectivity. Here we need to be quantitative: the limits of measurements 
of absorption depend crucially upon the noise characteristicsof the source and detector, and the time interval 
over which the measurements are averaged. Some of the most careful estimates of this have come from 
experiments (generally not carried out in plasmas, but applicable to them) which use diode lasers as the light 
source. An absorption of 1 0-6 over a 1 s time period is a quoted detectivity limit with a signal to noise (S/N) 
ratio of unity [2], and to translate this into practical detectivity terms we consider a specific example. The 
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quantum state resolved absorption features in the OH radical in its A ~ C +  - x2I2 transition near 308 nrn have 
cross sections of the order of 5x10-l6 cm2 [3]. In a plasma of length 10 cm, an absorption of 1v6 would be 
achieved by a concentration of 2x10' cm", a very respectable detectivity limit. However we reiterate that 
this is a limit, achieved with a well characterised laser source, and measured over a 1 s time period with unity 
S / N .  Higher measurement periods increase the problems of drift in the experimental parameters. In practice 
such limits would be hard to achieve in a noisy plasma environment, and a couple of orders of magnitude 
leeway in the absorption measurements should be allowed. We note for example that an absorption of 2 x 1 0 ~  
has been suggested as a limit for absorption measurements of the CH, radical with a Xe arc lamp as an 
excitation source near 2 16 nm [4]. 

Absorption measures the loss of photons, but makes no statement about their fate. Any absorption 
process will be accompanied by emission (fluorescence) from the excited state, and if the fluorescence 
quantum yield is "reasonable" (we consider what is meant by this later) then the emission can be used as a 
marker for the excited species, and hence for the species in the original lower quantum level. Any light 
source of the correct frequency can induce fluorescence, and we consider the use of a laser to do so. 
Fluorescence has an immediate advantage over absorption in that it is not a relative technique - in an ideal 
case the fluorescence is observed against a zero background. Ideal cases must give way to pragmatism, and 
we discuss in this review the application of laser induced fluorescence (LIF) to the noisy environment of a 
plasma. We first note the requirement of a "reasonable" fluorescence quantum yield. The ideal value of unity 
can be reduced by quenching, but this does not generally cause a major detectivity problem for low pressure 
(< 100 Torr) plasmas. What are far more troublesome are the unimolecular decay processes which can 
compete with fluorescence, and, for the vast majority of electronically excited polyatomic species, processes 
such as dissociation or internal conversion render LIF impractical. Our example of the CH3 radical 
considered above is a case in point - the absorption step at 216 nm is followed by overwhelming 
predissociationand essentially no useful fluorescence. 

Table 1: Laser armoury. Characteristicsof typical laser systems available for laser-inducedfluorescencestudies of plasma species. 
Powers and pulse energies are of course wavelength and system dependent, and the list is not intended to be exhaustive. The 
generation of harmonics below 200 nm is generally in gas phase media; the practical lower limit for third harmonic generation is 
taken to be the lithium fluoride transmissioncut-off, althoughshorterwavelengthsare achievable. 

Electronic transitions which lead to observable fluorescence lie roughly in the 100 - 1000 nm region, 
and laser sources are available (at varying output energies and powers) at all of these wavelengths. Most 
experiments are carried out with tunable lasers, and the starting point is often the tunable dye laser pumped 



with the visible or u.v. fixed frequency output of a Nd:YAG or excimer system. Various frequency 
conversion schemes extend the output range, and examples of the laser armoury with typical output 
conditions are given in Table 1. Longer wavelengths take us into the excitation range of vibration-rotation 
transitions, and although fluorescence is still observable from these species, the relatively low Einstein A 
coefficients (in comparison with those at shorter wavelengths) coupled with the lower sensitivity of 
commonly available i.r. detectors have meant that few LIF studies of plasmas have been carried out at these 
longer wavelengths (although spontaneous cr. emission can be a useful diagnostic under such conditions 
[5]). The characteristics of laser radiation that make the LIF technique useful are easily listed: tunability 
means that the absorption and hence the fluorescence is species selective, spatial coherence means that 
spatial selectivity within a plasma chamber is achievable with ease, intensity gives the possibility of 
multiphoton excitation leading to fluorescence. We shall give examples of the use of these properties in 
detecting atoms, radicals and ions in plasmas. 

This guide seeks to be realistic. We discuss four sets of examples of the type of information that can be 
obtained from lasers, stressing at all times that the observations can be quantitative, but that they do have 
disadvantages. We first discuss the measurement of spatially resolved species concentrations in plasmas, 
paying particular attention to detectivity limits and to the problem of determining the absolute species 
concentration from the LIF signal. The next section discusses energy distributions, both translational and 
internal, that can be obtained by LIF, and gives an opportunity for discussion of the thorny problem of 
saturation by laser irradiation and how it can affect the interpretation of LIF data. We then discuss what can 
be learnt from temporal variations of the LIF signal, in particular commenting on the measurement of 
parameters such as the loss rates of species on surfaces in the plasma reactor. Finally, measurements of 
electric fields by LIF are briefly discussed. Several examples will be taken from the LIF measurements 
conducted over the past ten years in our research group. 

2. MEASUREMENT OF CONCENTRATIONS 

Figure 1 shows an example of the kind of LIF signal that can be straightforwardly obtained in plasmas [6]. 
Here we use a conventional RF capacitatively coupled parallel plate reactor with feedstock gases of either 
CF4 or CHF3/Ar, at total pressures of 50 mTorr, and the species observed is the CF2 radical. CF2 has long 
been recognised as an important species leading to polymerisation in fluorinated hydrocarbon plasmas, and 
in these experiments it is excited at 234 nm in the strong A - X band system with fluorescence detected off 
resonance (to remove problems of scattered laser light) at 248 nrn [7]. We note several pieces of information 
which come from these data. First, the spatial variations of the species concentrationsmeasured as a function 
of height above the RF driven electrode surface are different close to the electrode for the two feedstock 
gases. For an understanding of this we need to realise that the processes which form the radicals appear not 
to be confined to electron impact of the parent molecule: surface formation (which would give rise to an 
enhanced concentration close to the electrode, observed in this case for CHF3/Ar and noticeable in CF, at 
higher pressures) can also play a major role 181. Secondly, the concentrations of the radicals appear to be 
approximately constant in the plasma bulk (at distances above 10 mm from the electrode), and reflect the 
importance of fast diffusion ironing out any local changes in production rates. Thirdly, the data here are 
given on a relative scale, and this indicates one of the major problems of LIF: measurements of relative 
concentrationsare facile, but putting these onto an absolute scale needs great care. 

In principle if the characteristicsof the excitation source are known, the spectroscopy of the transition is 
quantitatively understood, and the absolute value of the detected fluorescence can be measured, then the 
concentration can be determined. In practice this method is full of pitfalls, and rarely provides a convincing 
result. Here we first note that measurements of absolute spectral intensities of both the laser source and the 
fluorescence are not straightforward, and in section 3 below we shall dwell on another of the problems, that 
of saturation of the transition. To overcome the former difficulty, a variety of relative methods have been 
derived. One of these is to use a "fluorescence actinometer", a molecule whose concentration can be 
measured, and whose fluorescence intensity under similar conditions of laser excitation can be compared 
with that of the unknown species. Nitric oxide has been used in this way both for CF2 and for CF [9] and this 
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fixes the absolute concentrationsof the CF, radicals which are given in the caption to Figure 1. We note in 
passing that these absolute values are determined by the balance between the radical formation and loss 
rates, and that both of these processes can be extremely reactor specific, because of their dependences on 
surface processes. The problem of saturation affecting these calibrations has been cleverly addressed [lo] 
and we return to this below. Other relatiire methods have included a comparison of the LIF signal with that 
from Rarnan scattering [l 11, and an elegant comparison of the LIF intensities of an unknown concentration 
of the CH radical with that from the ~ 2 f  ion, the concentrationof the latter being equal to that of electrons in 
a nitrogen discharge, with the electron concentration measured by microwave interferometry [12]. The 
equality of the N2+ ion concentrationc with that of the electrons in a nitrogendischarge can be used to make 
an estimate of c by kinetic means [13]. If the discharge is extinguished, and conditions are chosen such that 
the ion loss process is dominantly dissociative recombinationwith electrons 

then the rate of loss of the ions is described by a second order equation 

where kl is the known recombination rate constant under the given experimental conditions. Analysis of the 
decay of the relative LIF signal thus gives the absolute rate constant: this has been used to determine the 
absolute concentration of the N; ion in the bulk of a parallel plate reactor as 1x10'~ cm" at a molecular 
nitrogen concentrationof 6 . 5 ~ 1 0 ' ~  ~ m - ~  [14]. 

Distance from electrode/mm 

Figure 1: CF, radical signals observed by LIF as a function of height above the RF driven electrode in a parallel plate reactor. 
Two separate sets of results are shown for a plasma in CF, (filled circles) and an equimolar mixture of CHF3/Ar (open circles), 
both at a total pressure of 50 mTon and the same applied power. As can be seen, the LIF signals behave very differently close to 
the electrode. The radical concentrations have been put on an absolute basis as explained in the text: for the data at 20 mm the 
concentrations in CF, and CHF,/Ar are 1x10'~ and 1 .4x10I3 cm3 respectively. Reproduced with permission from [6] .  

Figure 2 shows how the concentration of the N; ion varies with height above the driven electrode in a 
parallel plate reactor. The plasma sheath in this case is observed visually to extend about 12.5 mm above the 
electrode surface, and it can be seen that as the surface is approached and the ions are accelerated to it, their 
concentration drops as a consequence of their increased velocities. The limiting concentration that we have 
been able to measure in these experiments is about 2x10' cm", and we now consider whether or not this 
number can be considered a "reasonable" detectivity limit for LIF in plasmas. 



2.1 Detectivity 

In principle, it is possible to detect a single atom or ion by LIF. With a reasonably intense continuous-wave 
laser it is possible to saturate the absorption transition resulting in a maximum spontaheous fluorescence rate 
whilst the laser is active of half a photon per upper level radiative lifetime. Taking the example of atomic 
caesiurn, excitation by a laser diode at 852 nm will saturate at an intensity of 65 p~ .mm-2 ,  and fluorescence 
photons will be emitted at a rate of 16 million s-'. The emission from thermal population of the upper level 
will in comparison be negligible. By measuring the change in detected fluorescence signal in phase with 
wavelength modulation of the laser on and off the resonance wavelength, the background emission and laser 
scatter are rejected. 

Height above electrodelmm 

Figure 2: Measurements of the variation of  N; ion concentrations as a function of height above the driven electrode in an RF 
capacitatively coupled parallel plate reactor. LIF signals were put onto an absolute basis by measurements of the N,' decay rates 
under conditions where this was dominated by dissociative recombination. The smallest concentrations measured were 
approximately2x108 ions cnf3. Total pressure20 mTorr. Reprinted with permission from J. Appl. Phys. 81 (1997) 5945. O 1997 
American Institute of Physics. 

Our first estimate of the detectivity limit for species in a plasma is thus one atom, ion or molecule in the 
appropriate electronic, vibrational and rotational state within the observed volume. Taking a required spatial 
resolution of 1 rnm3 and assuming that we are dealing with a molecular species with 1% of the population in 
the required initial state, we arrive at a density of 10' cm", although the signal will at such concentrations 
vary as the single species diffuse into and out of the observed volume. Of course, the efficiency of detection 
of the fluorescent photons will not be unity - typically, because of the solid angle subtended by the detector 
and the detector efficiency, we shall collect less than 1% of the emitted light, even with Fl2.8 optics. If we 
increase the species concentrationto achieve once again the full single-atom count rate, and thus also reduce 
the statistical signal variation, we arrive at a concentration of the order of 10' ~ m - ~ ,  which proves in practice 
to be a good rule of thumb. 

For pulsed laser excitation, the pulse length is generally of the order of or less than the radiative 
lifetime, and thus the saturated spontaneous fluorescence signal will not exceed one photon per atom or ion 
per laser pulse. Single photon detection is nonetheless possible, and the above logic thus continues to apply: 
Goeckner et a1 [15] have measured argon ions by pulsed laser-induced fluorescence with a precision of the 
order of 10' ~ m - ~ ,  whilst for molecular species some of our own results are shown in fig 2 at a total 
concentrationof 2 x 10' cmJ[14], and we shall see later that it is possible to achieve some degree of velocity 
resolution at this level. Both cases are typical of ion densities in plasma sheaths. The low duty cycle of a 
pulsed laser however requires a longer averaging time than for C.W. experiments: Sadeghi et a1 [16] have 
compared C.W. and pulsed LIF, and found an immediate improvement in signal-to-noise ratio upon changing 
to the C.W. system, even though the species sensitivity was reduced as a result of improved Doppler velocity 
resolution. 
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Signal fluctuations are not, unfortunately, the sole sources of noise in LIF measurements of plasma 
species, for the plasma - unlike single trapped ions, for example - radiates light of its own accord. This 
plasma emission, due principally to electron impact excitation of the observed species, occurs at a much 
lower level than that due to saturated LIF, but a typical imaging system will be sensitive to plasma emission 
at all points within the field of view. The effective contributingvolume may be several orders of magnitude 
larger than that observed by LIF; it may also correspond to regions of higher species concentration, for 
example if the plasma sheath is observed through, or partly through, the plasma bulk. Plasma emission 
which occurs at wavelengths other than that at which LIF is observed may be removed by suitable filters 
placed before the detector. That which occurs at the observed wavelength is then eliminated from the signal 
by phase-sensitive measurement as the laser is switched or tuned on and off resonance, although it will 
continue to add to the measurement noise. 

There are, in addition, two routes through which the laser may contribute to the observed signal: scatter 
of the laser beam by the plasma and plasma chamber, and scatter of fluorescence induced outside the 
observed region. Direct laser scatter may be attenuated by the detector filters if we are observing off- 
resonance, but potentially has a much larger initial intensity: care should therefore be taken to eliminate 
scattering objects from the line of sight, and to reduce their reflectivity wherever possible. Scattered LIF 
cannot be so removed, although it should be attenuated by the scattering process itself. Nonetheless, if we 
again consider LIF measurements of sheath species probed by a laser beam entering through the plasma 
bulk, it is clear that the longer path length through the bulk and the higher species density there will result in 
a far larger yield than from the small and rarefied region being probed. If the laser beam runs along the axis 
of the plasma chamber, then the cylindrical walls will reflect some of the emission onto the axial region of 
observation. If it is then scattered, it will be indistinguishable from true LIF unless careful diagnostic tests 
are carried out. 

Sensitive LIF experiments will therefore use carefully designed imaging to collect the fluorescence 
without accepting too much background plasma emission or laser scatter, and the light will be passed 
through filters to remove both plasma emission and laser wavelengths. Wavelength modulation allows direct 
laser scatter to be eliminated, and background emission may be rejected by either wavelength or intensity 
modulation of the laser. Finally, comparison with the signal when the plasma has been extinguished will 
often confirm that the observed signal is indeed laser-induced fluorescence from the species and region of 
interest. 

3. ENERGIES 

LIF is a quantum state resolved measurement, and thus can be used to determine the distribution of the 
species over the populated quantum states. If the species are in Boltzmann equilibrium then this distribution 
will correspond to a temperature, but we should note that there is no a priori reason to assume that this will 
be true in a plasma. For a temperatureto be establishedwithin a given degree of freedom we need the rate of 
formation of a specific quantum state to be slow in comparison with the rates of the energy transfer 
processes within that degree of freedom. The latter processes may take place in 10-100 collisions for 
equilibrationwithin translational and rotational degrees of freedom, but may require many more than this for 
vibrational energy transfer. Furthermore, although different degrees of freedom may be characterised by 
temperatures they need not necessarily be the same. This will be particularly true for vibrational distributions 
in comparison with those for rotational and translational degrees of freedom owing to the relatively slow 
rates of energy transfer out of vibration into these modes. 

Figure 3 shows part of what is known as a fluorescence excitation spectrum of the N; ion near 400 nm, 
in which the total fluorescence is gathered as the laser wavelength is swept. The main structure can be 
identifiedas lines in the R branch of the ~ ~ 2 '  - x2zc (0,O) band, and the intensitiesof these can be converted 
into relative populations if the following factors are known or understood. First, a knowledge of the line 
strengths (equivalent to the absorption cross sections) is needed - these are straightforwardly calculable. 
Secondly, the excitation process is not isotropic in the laboratory frame, as the laser has a propagation vector 
and is normally linearly polarised. Even for an is~tropic sample (by isotropic here we mean a random 



distribution of the transition dipoles of the absorbing species) this means that the fluorescence itself is not 
spatially isotropic and is often polarised. Corrections should be applied to take this into account, and a "user 
friendly" guide to the extraction of populations under these conditions [17] has been extensively used in the 
fields of photodissociationand reaction dynamics where the distributionof transition dipoles probed by LIF 
can be markedly non-isotropic. In plasmas the distributionsare assumed to be isotropic, and the polarisation 
corrections assumed to be small. Neither is necessarily true: energy transfer processes involving drifting ions 
have been shown to lead to molecular frame alignment [IS], and polarisation corrections can be of the order 
of *lo% if transitions from different branches or from quantum states with low values of J are measured. 
For neutral species these effects however are generally small. Thirdly, saturation can again be a problem, 
and we consider its effect later on in this section. 

(0,O) Band - R Branch ( 1 . 1 )  Band 

P Branch R Branch 

Figure3: Laser excitation spectrum between 387 and 391 nm of the N,' ion excited in the (0,O) band of the B'C+ - X'C' transition 
in the bulk of a plasma o f  nitrogen at 50 mTorr. The R branch of the (0,O) band can be analysed to reveal the rotational distribution 
of the ground state ions, which in this case corresponds to a Boltnnann temperatureof 355 K. At the low wavelength end of the 
spectrum part of  the (1,l) band can be seen, and this allows an estimate of the relative vibrational populations of the v=O and 1 
levels to be made. 

An analysis of the data in Figure 3 shows that in the plasma bulk the N2f ions have a distribution which 
corresponds closely to a temperature, in this case 355+15 K. This is not surprising: rotational equilibrationin 
this ion is expected to be rapid under the experimental conditions (50 mTorr total pressure in this case), and 
we would expect this degree of freedom to be equilibrated with the local translational temperature. We note 
that in Figure 3 at shorter wavelengths, signal is seen in the (1,l) band of the transition, and this allows us to 
estimate the relative vibrational populations of v=O : v=l as 1 : 0.07. If this corresponded to a temperature 
(we cannot confirm this, as our detectivity precludes observations of higher vibrational levels) it would be 
around 1200 K, showing the marked difference between the rotational and vibrational degrees of freedom. 
Vibrational distributions are little studied in plasmas, and the importance of such excited species warrants 
investigation. For example, the electron impact cross section for a dissociation or ionisation process may be 
considerably enhanced by vibration, owing to a better overlap of geometries between the vibrationally 
excited state and the electronically excited state which leads to fragmentation(the electron impact equivalent 
of a Franck-condon factor in photon absorption). The process requires electrons of lower energy than for the 
ground state, another factor which would enhance the rate of the excitation process. Further investigation of 
such effects is required. 

Figure 4 shows a high resolution scan of the R(6) line of the (0,O) band of N;, taken in the plasma bulk 
with the laser beam propagating parallel to the electrodes (and thus perpendicular to any DC fields in the 
chamber). The double-peaked structure is caused by the spin rotation doubling in the 2 ~ f  states of the 
transition, and the widths are the result of the speed distributionof the ions in the laser propagationdirection. 
The fit is that which would be expected if the translational distribution corresponded to the same 
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temperature, within experimental error, as that of the rotational distribution. We note that this is not a very 
precise measurement of temperature, as the Doppler width scales as T ' ~ .  We note also that ions are affected 
by fields, and we expect this to be manifested in the speed distributions perpendicular to the electrodes. 
Within the plasma bulk we find the velocity distribution to be isotropic (and well represented by a 
temperature) within our experimental precision, but as the ions are driven through the sheath their speeds in 
this perpendicular direction increase. Figure 5 shows data as a function of height above the driven electrode: 
fast ions are seen, increasing in importance as the electrode is approached. These fast ions are always 
accompanied by an unexpected component of slow ions, the origin of which is still unclear but which may 
have been from ionisation by secondary electrons emitted from the electrode surface [14]. The non-intrusive 
nature of the laser beam means here that the velocity distributions can be measured throughout the plasma, 
and because the technique measures concentrations of particles as well as their speeds, particle fluxes can be 
estimated throughout the range of particle energies. 

Figure 4: High resolution LIF scan over the R(6) line of the N,' band shown in Figure 3. The two peaks result from spin doubling 
of the rotational levels in the 'c+ states, and the fit is that which would be expected from a Boltzmann distribution of the ions 
velocitiesat the same temperatureas for the rotationaldistributionof Figure 3. 

VELOCITY I km i' VELOCITY I km i' 

Figure 5: Measured relative N; ion densities as a function of velocity component perpendicular to the electrode surface,at 
distances of 9, 8, 6 and 4 mm above the driven electrode and at a pressure of 20 mTorr. The total ion concentrations are 
respectively 4.6,3.9,3.0 and 2.6 x 10% cm" and the curves are plotted in the same relative units. The solid curves are theoretical 
predictions, which, whilst reproducing well the velocity distributionsof the fast ions, are unable to account for the persistent slow 
component. The latter may be caused by ionisation from fast electrons emitted from the driven electrode. Reprinted with 
permission from J. Appl. Phys. 881 ( I  997) 5945.0 1997 American Instituteof Physics. 



3.1 Pitfalls of saturation 

At low laser intensities, the processes of laser-induced excitation and subsequent fluorescence are simply 
related: for each laser photon absorbed an atom, ion or molecule is excited, and there is a constant 
probability that the subsequent decay will be via spontaneous radiation of a fluorescence photon, the 
detectability of which will depend upon the solid angle subtended by the detector and any loss processes or 
inefficienciestherein. Provided that the probabilities and loss mechanisms are known and that the sample is 
optically thin, the ratio of fluorescent signal to laser intensity will hence give the absolute species 
concentration; if the sample is not optically thin then attenuationof the exciting laser beam and reabsorption 
of the fluorescence must of course be taken into account. Such is the basis for measurement of absolute 
species concentrations by LIF. The calibration parameters may be established experimentally in a number of 
ways, as has been discussed in Section 2. 

When the same principle is used to determine the vibrational and rotational distributions, it must be 
noted that the fluorescence yield depends upon rotational and vibrational quantum number as well as 
electronic state. The vibratiolial dependence is characterised by the Franck-Condon factor F(vI,v2), which 
simply depends upon the overlap of the initial and final vibrational wavefunctions. The rotational 
dependence of the fluorescence yield is described similarly by the Honl-London factor S(JI,J2), which 
accounts for the initial and final state angular momenta J1,2 and the requirement that this be conserved 
(AJ = J, - J2 = 0, f 1). The total absorption rate B12 (per unit spectral radiation density) from state 1 to state 2 
is thus proportional to the product 

where RI2 is the square of the dipole matrix element between the two electronic states and g, the initial state 
degeneracy (here the conventional notation is taken that the S(Jl,J2) sum over all J2 to gl). If the rotational 
distribution is required - it is often a good measure of the species translational temperature - then 
measurement is often made at high JI, J2 when the factor S(J1,J2)/gl loses its J dependence. This is not 
however always possible, and with diatomic hydrides, for example, the rotational level spacing may be large 
enough that only the low J states are thermally populated. In such cases, correction for the Honl-London 
factors will be essential. 

At high laser intensities typical of pulsed excitation, saturation occurs: the rate of excitation is sufficient 
that the ground (or lower) state population is depleted by the laser excitation before the end of the laser pulse 
or, in the continuous-wave case, before the atoms have had a chance to decay. The excitation rate is thus 
reduced whilst the converse process of stimulated emission competes with spontaneous fluorescence, and 
the signal becomes a sub-linear function of laser intensity. Ultimately, the strong laser field induces Rabi 
oscillations of population between the upper and lower levels: the mean excitation probability will be a half, 
and the fluorescence rate (if radiative decay is dominant) will be constant at half a photon per atom per 
radiative lifetime. Such saturation is, in principle, reproducible, and may therefore be calibrated, but the 
nonlinearity means that care must be taken if fluctuating signals are averaged, and in general it is necessary 
that the laser be stable for reliable results to be obtained. 

3.1.1 Saturation of homogeneously broadenedspecies by monochromatic illumination 

For monochromatic illumination (laser linewidth < A,,) of a homogeneously broadened sample of atoms, 
ions or molecules, by a laser of intensity I(v) and frequency v, the fraction of the population in the excited 
state will be given simply by [19,20] 
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I, is the saturation intensity for the species, given by 

h v  A,, Is(v) = - 
~ 1 2  (v)P 

where A12 is Einstein coefficient of spontaneous emission between the final and initial states, cl2(v) is the 
absorption cross-section for the transition and P = 72A12 [I + (1 - T ~ A , ~ )  g2~1/g1~21 where 21,2 and g1,2 are 
respectively the lifetimes and degeneracies of the initial and final states. With fully-allowed atomic 
transitions, the saturation intensity can be a few tens or hundreds of watts per m2, easily reached by C.W. 

lasers. Note that the saturation intensity depends, through P, upon the upper and lower level lifetimes, which 
are reduced at pressures high enough to broaden the natural atom or ion linewidth: the LIF yield, as well as 
the saturation characteristics, may thus be functions of the plasma pressure and other parameters which 
affect the population and quenching rates. 

Vibrational and rotational structure typically raises the saturation intensity due to the Franck-Condon 
and Honl-London factors by an order of magnitude or more, but saturation nonetheless remains possible 
with pulsed dye lasers, even when of broad bandwidth. Saturation has a somewhat different meaning with 
pulsed lasers, as we shall see in Section 3.1.3. First, however, we consider the effect of inhomogeneities in 
the laser-species interaction, and show that a linear dependence of LIF signal upon laser intensity by no 
means implies that saturationmay be neglected. 

3.1.2 Saturation of inhomogeneouslybroadenedspecies 

The fluorescence intensity from a homogeneously-broadenedsample (i.e. indistinguishable species) will rise 
with the laser intensity at low levels to a shoulder at Is, and approach a constant fluorescence intensity 
thereafter. The situation is not, however, so simple when the sample is inhomogeneously broadened - i.e. the 
absorption lines of the plasma species are distributed due to thermal Doppler shifts, fine spectroscopic 
structure or spatial variations in field-induced Stark or Zeeman shifts. In such circumstances, different 
classes of species will be saturated to different extents for a given laser wavelength. In the case of a Doppler- 
broadened sample, for example, the fluorescence signal will continue to increase with laser intensity even 
once the on-resonance species are strongly saturated: the signal essentially depends upon the proportion of 
species for which the process is saturated, which proves to vary as I I (~+IA~)~"  [20]. 

Inhomogeneities in the interaction between the plasma species and the laser may also be due to spatial 
variations in the laser intensity, so that saturation is achieved at the centre of the laser beam before it occurs 
at the edges. In such cases, the fluorescence signal will increase with laser intensity even if the plasma 
species are homogeneously broadened [21]. 

It should thus be clear that a linear dependence of fluorescence upon laser intensity will not necessarily 
indicate the absence of saturation. 

3.1.3 Saturation by non-monochromaticillumination: laser linewidth > A2, 

For the general case of broad-band C.W. laser excitation, it is necessary to integrate equation (2) across the 
laser emission spectrum: 

where I(v) is the laser emission spectrum. The absorption cross-section cI2(v) contains the spectral 
sensitivity of the species, and a given species class thus sees only that part of the laser intensity which lies 
within its homogeneous linewidth. For specific cases, a saturation hltensity may thus be calculated, and it is 



clear that an intense laser may be sufficiently broad in bandwidth that it avoids saturating the species 
because the spectral intensity is low. 

For pulsed laser excitation with a duration shorter than the excited state lifetime, saturation of the 
fluorescence signal will not occur until intensities rather higher than those indicated above, which 
correspond to significant excitation within an atomic lifetime rather than the shorter laser pulse duration: the 
AI2 t e p  should be replaced by the reciprocal of the pulse length. In such cases, account must also be taken 
of the laser bandwidth which will, by virtue of the finite pulse duration alone, be broader than the atomic 
absorption lineshape; the saturation intensity thus becomes proportional to the inverse square of the pulse 
length. If relaxation and spontaneous emission during the laser pulse duration T,,,,, may be neglected, then 
we may define a pulsed saturation intensity - at which the initial state population becomes significantly 
depleted - by 

where 72 is the upper level lifetime. For the 308.0 nm Q,(2) transition between the A*C'(V=O) and x2n(v=0) 
states of the OH radical, excited by a dye laser pulse of 10 ns duration, the saturation intensity will be 
700 k~.cm-', corresponding to a fluence of 70 p~.mm-2, easily achieved by the output of a commercial 
pulsed dye laser. This transition is not exceptionally strong; the upper state radiative lifetime is 700 ns, and 
in species such as CF, NO or CF2 saturation will occur at lower fluence levels. The above expression 
assumes, of course, that the laser bandwidth is entirely due to the finite pulse duration: this is a reasonable 
approximation for many lasers, whose single-pulse spectra are dominated by one or two longitudinal modes. 

Modification of equation (4) for pulsed lasers is in many cases of only academic interest. Broad-band 
pulsed lasers owe their spectral distributions to shot-to-shot jitter and multiple longitudinal (and transverse) 
resonator modes. The above expression is valid for a single-pulse laser spectrum, across which there is 
assumed to be no phase coherence, and in general the difficulty of obtaining appropriate data and performing 
such integrations will not be suffi'ciently worthwhile. For the case of a constant and uniform intensity 
Gaussian lineshape, the significance of saturation for LIF measurements in Doppler-broadened plasma 
species has been carefully considered by Goeckner and Goree [22]; the reader should nonetheless be aware 
that for many lasers the approximationto an incoherent Gaussian may be very poor. 

3.1.4 Dealing with saturation in laser-inducedjluorescence 

It is apparent that at low intensities, the fluorescence yield is directly proportional to the product of laser 
intensity and species concentration, with a proportionality constant which may be derived either theoretically 
or by calibration, as discussed in Section 2. In such circumstances, the use of LIF to determine absolute 
species concentrations is straightforward. If the sample species are inhomogeneously broadened, then 
sweeping the laser wavelength gives the relative populations of the corresponding classes, enabling velocity 
distributions and so on to be determined. It is clear, nonetheless, that the exciting laser must be narrow or at 
least reproducible in bandwidth: if the laser bandwidth is broad, the effective laser intensity is only that 
fraction which lies within the homogeneous linewidth of the observed species. 

If the laser spectral intensity is sufficient to saturate any of the species, then considerably more care is 
required in the interpretation of laser-induced fluorescence measurements, for the laser lineshape and the 
inhomogeneity of the laser-species interaction play crucial r8les in determining the fluorescence yield. 
Provided that the laser parameters are stable, a pragmatic calibration is nonetheless possible, as has been 
shown by Engelhard [21]; Cunge [lo] meanwhile has demonstrated a neat method of cross-referencing the 
LIF yields from two different species by scaling according to the saturation parameter. It is also possible to 
compare the relative yields of two transitions of differing cross-section which originate from the same 
quantum level, such as the main and sub-branchtransitionsof the OH molecule [23]. 
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The pitfalls of saturation in laser-induced fluorescence are two-fold. Firstly, saturation may go 
unrecognised because the fluorescence signal intensity continues to show a roughly linear dependence upon 
laser intensity: if a low-intensity calibration is applied to such data, the species concentration will be 
underestimated. Secondly, if the relation between laser and signal intensities is non-linear, then the average 
of a jittering or noisy signal may reflect the variation in laser intensity as well as the mean, and true 
calibration will in such circumstances be complex. The practitioner of LIF needs to be fully aware of these 
problems. 

4. TEMPORAL BEHAVIOUR 

Modulation of the power source applied to a plasma clearly will result in a change of the rate of formationof 
the active species produced as a result of electron impact processes. The steady-state equilibrium 
concentrationof these species depends upon the balance of the formation and loss rates, and if the time scale 
of the modulation is slower than that on which the equilibrium is re-established, then the time history of the 
reactive species can be followed with ease and kinetic information extracted. Section 2 above demonstrates 
how 100% modulation of a N, plasma can lead to information on the concentration of the dominant N; ion 
when the loss process is dissociativerecombination. One of the most useful pieces of information that can be 
derived from experiments on radicals in plasmas concerns the loss rates that can be measured on surfaces - 
processes which are often the dominant removal steps in plasmas and are significant in technologically 
important processes such as plasma etching, polymerisationand ion implantation. 

Timelms 

Figure 6: Semi-logarithmic plots of the variation in concentration of the CF, and CF radicals, observed by LIF, after the 
extinction of a plasma of 50 mTon CF,. Closed and open circles represent the decay of the species measured at two different 
locations, 20 and 2 mm above the driven electrode respectively. Under these conditions the decays are seen to be reasonably well 
represented by exponential loss processes, with that for CF being markedly faster than for CF,. Reprinted with permission from .I 
Appl. Phs .  66 (1989) 525 1 .  O 1989 AmericanInstituteof Physics. 

We give an example of the decay characteristics of radicals probed in a cylindrically symmetric RF 
excited parallel plate reactor [7] when the excitation source is removed. Under some conditions the resultant 
decay is well represented by a single exponential, and an example for both CF and CF2 radicals in a CF4 
plasma is given in Figure 6.  The time history of the radicals contains contributions from diffusion processes, 
losses in the gas phase by chemical reaction, and losses to the walls, and under some conditions the 
contribution from the wall loss process can be put on a quantitative basis. What can be estimated is a 
"phenomenological loss coefficient" [24], defined as the fraction of the particle flux to the surface which 
does not return to the gas phase on the time scale of the experiment. In Figure 1 we noted that radicals can 
have a marked spatial distribution within a reactor, and that this reflected formation and loss at the surfaces. 
For a full understanding of these processes both the spatial and temporal behaviour are required [S ] ,  and the 
complex behaviour that can occur is illustrated in Figure 7 where the spatially dependent loss phenomena of 
the CF2 radical in a CHF3/Ar plasma are shown. Plasma extinction leads to an initial rise of the 
concentration in the plasma bulk (20 mm from the electrode surface) because of diffusion from the higher 



concentrationsof species present in the steady state near the electrode (illustratedin Figure 1). On re-ignition 
this concentration drops markedly, suggesting a homogeneous loss process involving other species formed 
in the plasma. 

These results illustrate the type of information that can be found from such time dependent 
measurements, but we finish this section with two caveats. The first is that the determination of the loss 
coefficient tells us nothing about the chemical fate of the species lost on the surface. Some information can 
be obtained by looking for product molecules, for example the SiF, radical formed by F atom etching of Si 
substrates [25], and observable by LIF near 225 nm. The second more general point concerns LIF detection, 
and is illustrated by observations of ground state o(~P) atoms, for which a convenient detection scheme is 
two photon excitation at 226 nrn which populates the 3p 3~ level and is followed by fluorescence to the 
lower 3s 3~ level at 845 nm. Dye lasers can produce considerable output at 226 nm, and this is enough to 
create a population inversion between these fluorescing levels, which then can result in amplified stimulated 
emission (ASE) along the axis of the laser beam. The process is well understood, but can in some cases have 
an effect on the LIF diagnostic signal, as the ASE process will compete with spontaneous fluorescence 
which is thus reduced. This can be a problem when the depletion is a non-linear function of atom density, 
and an effect of this kind, causing a fluorescencereduction of the order of 30%, has been reported [26]. Our 
own measurements of the decay rates of 0 atoms following plasma extinction have demonstrated that 
erroneous results can be obtained if ASE is strong, as the fluorescence depletion is non-linear in 0 atom 
concentrationand hence in time [27]. The problem is solved (at the expense of signal) by using a lower laser 
power, and illustrates that care needs to be taken to ensure that the laser diagnostic is not itself adversely 
affecting the quantity being observed. 
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Figure 7: Variation of the time dependenceof the LIF signal from CF, with height above the driven electrode for a plasma of 200 
mTorr equimolar CHF,/Ar as the power is switched off (extinction period) and on (ignition period). Close to the electrode the 
behaviour is similar to that seen in Figure 6, but in the bulk it is very different; an initial rise is seen following extinction and 
caused by diffusion of the higher concentrationof radicals from close to the electrode. Re-ignitioncauses a noticeable fast drop in 
bulk concentration. 
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5. FIELDS 

w 4mm I 

Charged particles react to fields, and a measurement of the field distribution in a plasma is crucial for 
understanding the methods by which energetic ions and electrons are formed, and the energies with which 
they collide with other species and with surfaces. LIF can do this in two ways. The first involves the Stark 
effect, in which energy levels are altered in the presence of an electric field. An example is given in Figure 8 
from the work of Muraoka et a1 [28], in which LIF is observed following the excitation of the 11 'P state of 
He from the metastable 2 IS  level in a DC glow discharge. Here advantage is taken of the fact that Stark 
splittings in He increase with principle quantum number n, and for the n=l 1 level the clear resolution in 
Figure 8 was obtained for an electric field of 90 Vlmm, with the detection limit, determined simply by the 
laser bandwidth, being 21.5 Vlmm. Excitation to higher n with a spectrally narrowed source improves this 
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by a factor of 2. More recently Stark shifts in atomic H excited to n=3 by two-photon excitation of the 
ground state atom 2t 205 nm have yielded a sensitivity limit of 5 Vlmm [29]. 

The second method for LIF measurement of electric fields relies on the field mixing of levels of 
opposite parity in the upper electronic level [30]. The method is illustrated with reference to the best studied 
example, that of the BCl radical excited in its A'II - X'C transition, the (0,O) band of which is at 272 nm. 
The upper A ' n  state has its rotational levels split into opposite parity components, depending upon whether 
the II electron is in an orbital which is symmetric or antisymmetric with respect to reflection through the 
plane of rotation ('lambda doubling'). In the absence of a field (and of collisions), excitation of for example 
an R branch transition yields fluorescence only on R and P branch lines (AJ=*l), owing to the parity 
selection rules. Electric fields cause mixing of the states of opposite ph ty ,  and in the presence of a field a Q 
branch (AJ=O) is seen, the intensity of which relative to the fully allowed R and P branches gives a measure 
of the electric field. The field detectivity limits are of the same order as those measured by Stark splittings, 
and a useful list of the appropriate species for which this technique is possible has been published [28]. One 
of the most notable pieces of information that can be obtained through this technique is a measure of how 
the electric field changes with the phase of the applied voltage, for example during an RF cycle [31]. The 
limitation however is that the species needs to have a C ground state, and this restricts the range of diatomic 
species that can be studied, eliminating for example radicals such as OH, CF and SiF which have unpaired 
electrons but *II ground electronic states. 

Figure 8: LIF spectrum near 321.25 nm of the He 11 'P t 2 'S transition in a DC discharge, against laser detuning from centre 
wavelength. The peaks arise from the Stark splitting in the upper state, and from these data the DC field can be calculated. 
Reproducedwith permission from [28] 

6. CONCLUSIONS 

Densities, spatial distributions, energies, fields and interaction kinetics of plasma species can all be measured 
in a non-invasive fashion by LIF: informationcrucial for the refinement of models low temperature plasmas. 
Yet lasers are only rarely used as diagnostics in the technological plasmas used for industrial processing, 
partly because lasers have hitherto been bulky, expensive and - in spite of their manufacturers' claims - in 
need of the attention of skilled operators. 

The examples of laser-induced fluorescence measurements that we have given in this article all involve 
the use of laser radiation in the visible and U.V. spectral regions. These wavelengths can now be reached by 
efficient upconversionof the output of C.W. diode lasers manufactured in vast quantities for communications 
and optical reader systems. Efficient frequency doubling of C.W. radiation in KNb03, for example, can yield 
several mW of light in the 430 nm region [32], and carefully designed resonators allow similar powers to be 
generated with few gaps from as low as 330 nm up to 500 nm and beyond. Even freqiency quadrupling, 
which extends the range of these sources to below 250 nm, has been reported. Such systems are already 
being considered for balloon-borne atmospheric measurements, where their small size, relatively low cost 
and ruggedness make laser-based diagnostics attractive. Diode lasers have an additional advantage over 



conventional devices in that their emission wavelength is directly controllable electrically, permitting 
extremely high stability to be maintained and allowing complex modulation and signal processing schemes 
to be tailored to the spectroscopic application. 

Diode laser systems, only just emerging from the laboratory, may represent the future of in situ 
processing diagnostics, but their conventional cousins continue to be capable workhorses for plasma 
investigations, provided that the price and expertise can be afforded. A pulsed dye laser, pumped by an 
excimer or Nd:YAG source, or a continuous-wave system with the dye pumped by an argon ion or C.W. 

Nd:YAG laser, will put at its owners' disposal most of the techniquesthat we have described. 
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