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The optical scattering force, behind Doppler cooling and magneto-optical trapping, may be amplified with-
out incurring additional spontaneous emission by the state-dependent coherent deflection produced by a pulsed
or chirped laser field. At some cost in experimental complexity, amplified forces allow efficient cooling on
narrow transitions and permit the compact deceleration of beams with reduced transverse heating, and will be
of interest for molecules and atoms with open level schemes where losses following spontaneous emission
would otherwise prevail. We present a general analysis of the amplification scheme, and propose an optimized,
dynamic cooling scheme that allows the temperature of a sample to be reduced by around a factor of two per
excited state lifetime.
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Radiation pressure is the origin of many mechanisms for
atomic manipulation �1�. Resulting from the transfer of a
photon’s momentum to the atom or molecule that absorbs it,
the optical scattering force was shown as early as 1933 with
the simple deflection of atomic sodium by light from a dis-
charge lamp �2�. With the invention of the laser, the use of
radiation pressure to manipulate dilute atomic samples has
since become commonplace for, if the absorption strength
depends upon parameters such as position, velocity or orien-
tation, the resulting force offers a mechanism for their con-
trol. The Doppler shift provides a velocity-dependent inter-
action that is the key to laser cooling �3,4�, while an
inhomogeneous magnetic field produces a position-
dependent Zeeman shift that underlies the magneto-optical
trap �5�. At low temperatures, further and more subtle
mechanisms appear �6–9�.

Manipulation by means of the scattering force generally
uses only the impulse accompanying optical absorption; a
single, low power laser source suffices, and the process is
insensitive to the exact strength of the radiative interaction
�10,11�. Emission is left to spontaneous events, whose sym-
metrically distributed radiation imparts no average recoil; but
a reasonable decay rate requires strongly allowed transitions,
whose linewidths usually prevent cooling from reaching the
recoil limit �12�. Species are limited to those with simple,
closed level schemes, whereby decay repopulates the initial
state to repeat the cycle. For molecules, spontaneous emis-
sion scatters population across a manifold of rovibrational
states, and molecular deflection, when first demonstrated on
a beam of Na2 �13�, showed a mean impulse below that of a
single photon. Even atomic hyperfine structure renders a fur-
ther laser necessary for optical repumping �which involves a
further spontaneous decay�, and practical uses of the scatter-
ing force have with few exceptions been limited to the alkali
elements and isoelectronic ions.

The scattering force is confined to around a single photon
impulse per excited state lifetime. This limits the capture
range of magneto-optical traps �14� and defines the minimum
distance needed for beam deceleration, thousands of photons
being needed to counter the momentum of an atom at room
temperature. Several researchers have therefore considered
enhancing the scattering force by repeatedly stimulating both
excitation and emission within the atomic lifetime, giving a
state-dependent impulse that can greatly exceed the single
photon recoil. Momentum has been transferred to atoms at
three times the rate permitted by the normal spontaneous
emission limited route, using counterpropagating, interleaved
trains of population-inverting “�-pulses” �15� and, more ro-
bustly, an elegant demonstration of chirped adiabatic passage
�16,17�. With atoms, hundreds of photon momenta have been
thus transferred, while tens of impulses have been imparted
to a beam of molecular sodium �18�. State-dependent
�-pulse schemes have been used to increase the path sepa-
ration in atomic interferometry �19�. Where the pulses over-
lap, this geometry creates a position-dependent force for fo-
cusing and confinement �20,21�; alternatively, combined with
a velocity-selective excitation, it offers a strong cooling ef-
fect �22�.

In this paper, we note that the coherent, multiphoton de-
flection resulting from successive interaction with
alternately-propagating pulses can convert any selective ex-
citation into a selective force, enhancing a variety of optical
techniques for trapping, slowing, and cooling. Compared
with the single photon recoil accompanying initial excitation,
this amplifies the optical force while diluting the role of
spontaneous emission. The mechanism may be regarded both
as stimulated scattering and as a relation of bichromatic and
moving dipole forces.

Separating the selective excitation from the impulse al-
lows us to offer a simple analysis to guide practical applica-
tions of this phenomenon. The maximum amplification is
determined by the number of pulses per excited state life-
time. As the limit set by the lifetime is approached, memory
of the initial state is lost; the useful impulse ceases to grow,*Electronic address: tim.freegarde@physics.org
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and additional pulses contribute instead to the decoherence
and heating of the atomic sample. Our results allow the bal-
ance between impulse and heating to be optimized; for inter-
ferometry, for example, this allows the best combination of
enclosed area and signal-to-noise ratio.

With amplified cooling, the balance between impulse and
heating may be optimized for any initial distribution. We
show that, by adjusting this balance as a sample is cooled,
both the number of spontaneous events and the time taken
may be significantly reduced from a linear to a logarithmic
dependence on the typical initial momenta. By vastly in-
creasing the ratio of the useful impulse to spontaneous decay,
this may make practical the optical cooling of molecular va-
pors. For atomic species, amplification of the cooling force
may permit the use of narrow transitions that would other-
wise be too slow, allowing cooling down to the recoil limit
�23�.

I. AMPLIFICATION SCHEME

Whereas conventional cooling and trapping schemes ide-
ally need only a single, low power laser for selective excita-
tion of a closed cooling transition �as exists for Mg+ or Be+

ions�, amplification requires a second laser system offering
well controlled, relatively intense pulses tailored to provide
coherent transfer between atomic states. The arrangement is
shown schematically in Fig. 1.

We consider a two-level system, with ground �or princi-
pal� state g and excited state e, and assign a momentum p, so
that the overall state is written as �� ,p�, where � equals g or
e. The process begins with the conventional step of selec-
tively exciting a given class of species from �g ,p0� to �e ,p0
−�k�, using the usual low power laser. If this initial excita-
tion has a velocity-dependent probability P�p0�, then the ac-
companying velocity-dependent change in momentum com-
prises the conventional cooling process; if instead it depends
upon position, then it is the basis of an optical trap. Alterna-
tively, for interferometry, it will be the process that prepares
the initial superposition of the two states.

Before the excited state decays by spontaneous emission,
we use the tailored pulse laser to apply along the same axis a
sequence of alternately-propagating �-pulses, each of which
inverts the atomic state populations and deflects the species
up or down accordingly. The key to the process is that a
ground state atom suffers deflection in the direction of the
pulse whereas an excited state atom recoils in a direction
opposite to the incoming pulses. After n pulse pairs, and in
the absence of spontaneous emission, the population is split
between the states �g ,p0+2n�k� and �e ,p0− �2n+1��k�. The
momentum difference introduced by the selective excitation
is thereby increased by a factor of 4n+1. It is thus as if a
second photon of momentum 4n�k had accompanied the
original photon and mimicked its action.

In contrast to conventional Doppler cooling, those atoms
initially left unexcited nonetheless incur a nonzero impulse.
This may in many cases be useful, as it may sweep this class
of atoms towards the required position or velocity whilst the
selected atoms are pushed in the opposite direction. Alterna-
tively, we may interleave pulse sequences in which the
downward pulse leads so that—with the velocity selection
either reversed or extinguished—a net impulse is experi-
enced only by the selected species.

Our analysis begins by deriving the effect of a single train
of pulses upon the atomic or molecular species, starting im-
mediately after the selective excitation process; depending
upon the initial state, number of pulses, and probability of
decay, we obtain the mean impulse, and variance, the final
state probabilities, and the likely number of intermediate de-
cays. These results are the important parameters which de-
termine the effectiveness of the amplification in any applica-
tion, from interferometry to cooling and trapping.

We next examine the effect of the single train upon an
atomic ensemble, taking as an example a generic cooling
process applied to a Gaussian velocity distribution. Our
analysis allows determination of the optimum parameters for
the amplification scheme for a given initial velocity distribu-
tion.

Finally, we show that an appropriately tailored series of
pulse trains offers a remarkable improvement in both the
speed of cooling and the number of spontaneous decays
likely to be incurred.

II. RESPONSE TO A SINGLE PULSE TRAIN

To determine the response of an atom to a train of pulses,
we begin by considering the effect of a single pair of
oppositely-traveling pulses. We start immediately before the
first upward pulse �see Fig. 1� and calculate the state prob-
abilities immediately before the next such pulse a period �
later. Depending upon the initial state of the two-level atom
and whether or not spontaneous decay occurs while it is in
the excited state, there are five different possibilities, shown
in Table I. The probability of excited state decay within a
period � /2 is taken to be q=1−exp�−�� /2�21��, where �21 is
the excited state lifetime. We calculate separately the im-
pulses resulting from stimulated and spontaneous processes
and characterize the momentum reached as a result of stimu-
lated interactions through the momentum index p.

FIG. 1. Scheme for amplification of the optical scattering force.
Depending upon the state in which the atom is left after selective
excitation, a sequence of counterpropagating � pulses either rein-
forces the initial impulse or accelerates the species in the opposite
direction. Chirps from a frequency-modulated laser could replace
the pulses shown here.
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After some algebraic manipulations, given in Appendix
A, we arrive at expressions describing the momentum distri-
bution after n pulse pairs. The following expressions depend
upon the probability q of excited state decay and apply to an
ensemble of atoms with the same initial velocity, of which a
fraction e0 begins in the excited state. If no impulse accom-
panies the selective excitation, e0 corresponds directly to the
excitation probability P.

The average momentum after n pulse pairs is given, in
units of �k, by

In,e0
= 2�1 − q

2 − q
− e0� �1 − q�2n − 1

�1 − q�2 − 1
�2 − q� �1�

and thus when nq�1 the relative impulse between ground
and excited state atoms will be 	4n. The variance is given
by

�n,e0

2 = −
4

q2� 1 − q

�2 − q�2 �q2 − 3q + 3� −
q2 − 2q + 2

2 − q
e0 + e0

2�
+

8�1 − q�
q�2 − q�

n +
4�1 − q�2n

q2 
1 − q − �2 − q�e0 + 2e0
2�

−
4�1 − q�4n

q2 � �1 − q�2

�2 − q�2 − 2
1 − q

2 − q
e0 + e0

2� . �2�

The average number of spontaneous decays incurred is given
by

Dn,e0
=

2q

2 − q
n + q2�1 − q

2 − q
− e0 �1 − q�2n − 1

�1 − q�2 − 1
, �3�

and, after the pulse train, the fraction remaining excited is
given by

en,e0
= �1 − q�2ne0 +

1 − q

2 − q
�1 − �1 − q�2n� . �4�

These expressions, together with details of the processes of
selective excitation and spontaneous decay, suffice to de-
scribe any implementation of the amplification scheme.

When the small additional contributions due to the initial
selective impulse a and eventual spontaneous recoil � are
included, and momenta are now measured with respect to
those before the selective excitation, the mean impulse and
heating terms become

In,e0

�T� = e0�a + In,1� + �1 − e0�In,0 �5�

and

�n,e0

2�T� = e0�a + In,1�2 + �1 − e0�In,0
2 − �In,e0

+ ae0�2 + e0�n,1
2

+ �1 − e0��n,0
2 + ��e0Dn,1 + �1 − e0�Dn,0� + ��e0en,1

+ �1 − e0�en,0� . �6�

Figure 2 shows the relative impulse �In,0
�T� − In,1

�T�� and heating
�standard deviation, �n,0

�T�� for various spontaneous decay
probabilities q for pulse trains containing up to 40 pulse
pairs, taking into account the initial selective impulse �with
a=−1� and subsequent spontaneous emission ��=1/3�. As
the accrued decay probability �qn /2 increases, the correla-
tion of the atomic state with its initial value disappears and
the average impulse ceases to grow, approaching a limiting
value of 2 /q. Heating, in contrast, continues to increase. The
dependence of the variance upon the initial state is too small
to distinguish.

As the number of pulse pairs n increases, the initial im-
pulse a becomes irrelevant, and the role of the conventional
manipulation step becomes increasingly that of selective ex-
citation.

III. APPLICATIONS

Our results may be used to determine the optimum num-
ber of pulse pairs for any implementation of the amplified
scattering force. For atomic beam deceleration, for example,

TABLE I. Interaction with a pair of oppositely-traveling pulses
gives five distinct outcomes, depending upon the initial state �mea-
sured immediately before the upward pulse� and whether spontane-
ous decay—represented by sloping arrows—occurs while the atom
is in the excited state.

FIG. 2. Mean relative impulse �solid lines� and heating �dashed
lines� as functions of pulse train length for various decay probabili-
ties q.
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amplification reduces the stopping distance and hence both
the dimensions of the apparatus required and the transverse
growth of the beam, as well as reducing the transverse heat-
ing because fewer spontaneous emissions are required for a
given velocity change. The amplification is chosen to give
the maximum deceleration that does not significantly heat
the slowed sample. A variation of this deceleration scheme
has been elegantly implemented using a bichromatic stand-
ing wave �24�.

Chu and co-workers have used amplification to increase
the path separation in atom interferometers �19,25–28�. Here,
the sensitivity of the interferometer depends upon the phase-
space area enclosed between the two interfering paths, which
is increased in at least linear proportion to the amplification
factor. Spontaneous emission causes some of the coherent
atom flux to be lost, hence reducing the signal-to-noise ratio
of the measurement. Our results may therefore be used to
calculate the length of pulse train which gives the best abso-
lute sensitivity to the measured parameter. If the interferom-
eter encloses an area of real space, the path separation may
have to be sufficient to pass around a physical object—an
arrangement which so far has only been achieved using me-
chanical gratings �29�.

IV. OPTIMUM AMPLIFIED COOLING

As an example, we consider a generic amplified cooling
scheme, shown in Fig. 3. Selective excitation divides the
initial velocity distribution D�p� between the ground and ex-
cited states with an excitation probability P�p�, which for
simplicity we take here to be a step function at p=0. This
velocity-dependent process could be conventional Doppler

cooling �3,4�, interferometric cooling �30�, or chirped exci-
tation �22�. The pulse trains are then applied, and the two
parts of the velocity distribution slide over each other. Fi-
nally, species in the excited state are allowed to relax to the
ground state. This part of the process has been addressed by
Djotyan et al. �31�; a related situation in which the two coun-
terpropagating fields are present simultaneously has been ex-
tensively analysed by Kazantsev et al. �32�.

In the absence of spontaneous emission, any magnitude of
amplified impulse may be chosen, and the optimum is simply
that which gives the best overlap of the two fractions. Spon-
taneous emission may cause this desired relative impulse to
exceed the maximum �2�k /q� possible, or result in signifi-
cant heating of the sample; the optimum pulse train will then
be somewhat shorter.

Our results allow calculation of the optimum pulse length
and its cooling effect, shown in Fig. 4 for velocity distribu-
tions that are initially Gaussian. Details of the calculation are
given in Appendix C. As we shall see, displaying these pa-
rameters as a function of initial temperature will allow us to
identify a particular cooling strategy. The curves show the
optimized cooling factor—the ratio of final to initial tem-
peratures, Tf /Ti—and the corresponding number of pulse
pairs required, n, as a multiple of the optimum number n0
when q=0. It is apparent that a substantial reduction in tem-
perature can be achieved even within an excited state life-
time by a single pulse train, whose optimum length depends
upon the initial temperature of the atomic sample. n is taken
to be an integer when calculating Tf /Ti, but for clarity is
allowed to vary smoothly in the presentation of n /n0.

Consider first the solid lines showing Tf /Ti in Fig. 4. For
low initial temperatures, the final spontaneous recoil is sig-
nificant, and limits the cooling effect that may be achieved.
Tf /Ti therefore falls with increasing initial velocity spread,
irrespective of the decay probability q, and rapidly reaches a
limiting value of around 0.36, described below. Some undu-
lations are apparent simply because the optimum number of

FIG. 3. Amplified cooling uses a velocity-selective excitation
P�p� to divide the initial velocity distribution D�p� between the two
quantum states; the small accompanying impulse a otherwise ac-
counts for the Doppler cooling force. The optimum amplification is
then determined by a combination of the best overlap of the two
halves, offset by the heating due to spontaneous emission during the
process.

FIG. 4. Optimized cooling factor Tf /Ti �solid lines� and corre-
sponding pulse train length n �dashed lines as fraction of decay-free
optimum, n0= p1 /2��� for Gaussian velocity distributions, shown
as a function of the initial temperature Ti �in units of the recoil
temperature Tr� for various decay probabilities q from 0.000 01 to
0.1. The width p1 of the initial velocity distribution is shown on the
upper x axis.
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pulse pairs must jump abruptly between integer values, for
Ti /Tr	 �8, for example, the best integer value of n is 0, and
the process is identical to conventional Doppler cooling. For
low values of q, Tf /Ti then remains quite level for a wide
range of initial temperatures, and the optimum cooling can
always be achieved without a significant probability of
decay.

The lower limit to Tf /Ti corresponds simply to the opti-
mum overlap of the two halves of the velocity distribution.
In the absence of significant spontaneous emission, the two
halves of an initially rectangular distribution could be over-
lapped perfectly, halving its width and reducing its variance
and temperature by a factor of four. For a distribution that is
initially Gaussian, the overlap is less perfect, and the opti-
mum overlap gives a reduction in variance of a factor of
�1−2/��	0.36.

As the range of initial velocities or decay rate q is in-
creased, this optimum overlap demands more pulses than can
be applied without decay limiting their effectiveness, and the
temperature can no longer be reduced by the same factor.
This limit is reached first for the broadest velocity distribu-
tions, but affects increasingly lower initial temperatures as
the decay probability q is increased. Ultimately, the best that
we can do is to apply a constant impulse, depending upon the
decay probability q, that has an ever less obvious effect upon
the broader velocity distributions—although it is of course
greater than that offered by the unamplified cooling scheme
alone.

If we now consider the variation in the sequence length
n /n0 as a function of the initial temperature—shown by the
dashed curves in Fig. 4—we see that for low values of q the
sequence length approaches unity as soon as the spontaneous
recoil can be neglected. This initial behavior is also in part an
artifact associated with the presentation, for clarity, of a
smoothly-varying function that corresponds to noninteger
values of n and n0. Provided that the decay probability q is
sufficiently small, the pulse length may then maintain its
ideal value for increasingly broad velocity distributions, until
eventually decay begins to limit the useful impulse, and the
optimum length falls below the ideal.

These results suggest a cooling strategy that, at a modest
expense in experimental complexity, offers a number of sig-
nificant improvements over conventional Doppler cooling.
Beginning with a broad distribution of velocities, a series of
cycles of excitation, amplification, and relaxation is applied,
each optimized to the pertaining temperature of the sample.
Initially, a large impulse is imparted, incurring a relatively
large variance which is nonetheless insignificant compared
with that of the sample. The process is then repeated on the
now somewhat narrower distribution, which requires a
shorter pulse train and hence results in rather less heating.
This pattern can be continued, adapting the pulse length at
each stage to the expected initial temperature, reaching the
limit of unamplified conventional cooling. This dynamic
variation of the interaction may be compared with that of
Kasevich and Chu and Davidson et al. �33,34�.

Whereas conventional cooling would impart less than a
photon impulse per excited state lifetime, and hence require
a time proportional to the width of the initial velocity distri-
bution, the duration of the dynamically-adjusted, amplified

arrangement depends upon its logarithm. To cool a rectangu-
lar distribution of velocities of width 10 000�k to its recoil
limit, for example, would conventionally take 10 000 life-
times; with dynamically adjusted amplification, this could
instead be achieved in log2�10 000�	13. Far fewer sponta-
neous photons then contribute to transverse heating.

Amplification allows effective cooling to be achieved
even on narrow transitions whose lifetimes are too long for
conventional cooling schemes �35�, opening up a regime in
which the limiting temperature is no longer determined by
the photon scattering rate �
 /2�� /2T. With amplification,
Doppler cooling directly to the recoil limit should be pos-
sible. It could then be applied to very long-lived Raman tran-
sitions, with the velocity-selective excitation following the
scheme of Kasevich et al. �25,36� and relaxation induced
actively by pumping to a short-lived excited state.

Finally, the number of times the species have to be re-
pumped after relaxation is reduced to a level that might even
be achieved efficiently with open-level atoms and molecules.
To retain half the sample after 10 000 repumping cycles re-
quires an individual efficiency of 99.99%; for only 15 cycles,
this is reduced to 95%.

V. CONCLUSION

The optical scattering forces, used for Doppler cooling,
beam deceleration, atom interferometry, and magneto-optical
trapping, may be amplified by using the state-dependent in-
teraction with counterpropagating interleaved trains of
population-inverting laser pulses. This coherent amplification
increases the useful impulse per excited state lifetime, per-
mitting the use of narrow atomic transitions and reducing the
distance required to decelerate fast or heavy species. By in-
creasing the impulse per spontaneous event, amplification
reduces both transverse heating and the number of repump-
ing cycles required, rendering accessible species such as
molecules with open level schemes.

We have presented here a general analysis that allows the
performance of coherent amplification to be evaluated and
optimized for a range of applications. For atom interferom-
etry, our results allow the optimum pulse sequence to be
determined, balancing the interferometer area against atom
flux to give the best overall sensitivity. Enhancements to
Doppler cooling allow the temperature of a sample to be
reduced by a factor approaching four per excited state life-
time. This suggests a dynamically adjusted cooling scheme
in which the time taken, and the number of spontaneous
events suffered, depends logarithmically rather than linearly
upon the number of photon impulses required.

Although we have for simplicity cast our scheme in terms
of population-inverting �-pulses, practical implementations
would most likely use more robust, chirped interactions,
such as Raman adiabatic passage �37–42�. As such arrange-
ments are also capable of the initial selective excitation it-
self, for both velocity-selection �30� and interferometry
�27,43�, such schemes may be regarded as specific manifes-
tations of the mechanical manipulations possible on a
momentum-state quantum computer �44�.
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APPENDIX A: RESPONSE TO A SINGLE PULSE-TRAIN

Our analysis of amplified cooling is approached in three
stages. First, we derive the effect of a single train of pulses
upon the species, starting immediately after selective excita-
tion; depending upon the initial state, number of pulses, and
probability of decay, we obtain the mean impulse and vari-
ance, the final state probabilities and the likely number of
intermediate decays. Then, using these results, we analyze
the overall effect upon an initial velocity distribution. Fi-
nally, we establish, in terms of the velocity-selective excita-
tion characteristics, the optimum length of the pulse train and
its effect upon the distribution of species velocities.

To determine the response of an atom to a train of pulses,
we begin by considering the effect of a single pair of oppo-
sitely traveling pulses, starting immediately before that trav-
elling in the positive direction, and calculate the state prob-
abilities immediately before the next in that direction a
period � later. Depending upon the initial state of the two-
level atom and whether or not spontaneous decay occurs
while it is in the excited state, there are five different possi-
bilities, shown in Table I. The probability of excited
state decay within a period � /2 is taken to be
q=1−exp�−�� /2�21��, where �21 is the excited state lifetime.
We calculate separately the impulses resulting from stimu-
lated and spontaneous processes and characterize the mo-
mentum reached through stimulated interactions through the
momentum index p.

If the �n+1�-th measurement finds the atom in the ground
state with a momentum of p�k, then at the time of the nth
measurement it could have been in the ground state with two
momentum units less �no spontaneous decays�, or the ground
state with the same momentum �two spontaneous decays�, or
the excited state with two momentum units more �one spon-
taneous decay�. If Pn�s , p� indicates the probability of being
in state s=g ,e and having a momentum of p�k at the time of
the nth measurement then, taking into account the probabili-
ties of the various events, we may write

Pn+1�g,p� = �1 − q�Pn�g,p − 2� + q2Pn�g,p� + qPn�e,p + 2� ,

�A1�

Pn+1�e,p� = q�1 − q�Pn�q,p� + �1 − q�Pn�e,p + 2� .

�A2�

These recursion relations allow the state probability distribu-
tion to be determined in terms of the initial conditions. We
define

gn = �
p=−�

�

Pn�g,p� and en = �
p=−�

�

Pn�e,p� �A3�

and note that

�
p=−�

�

Pn�g,p ± 2� = �
p=−�

�

Pn�g,p� �A4�

and similarly for the excited state, so that

gn+1 = �1 − q + q2�gn + qen, �A5�

en+1 = q�1 − q�gn + �1 − q�en. �A6�

Working is simplified by writing gn=nn
++nn

− and en= �1
−q�nn

+−nn
−, so that

�nn+1
+

nn+1
−  = �1 0

0 �1 − q�2��nn
+

nn
−  . �A7�

The sum of the ground and excited state populations, to
which nn

+ corresponds, is therefore happily constant, while
the second term gives nn

−= �1−q�2nn0
− and hence an excited

state probability

en = �1 − q�2ne0 +
1 − q

2 − q
�1 − �1 − q�2n� . �A8�

To determine the average momentum, we further define

Gn = �
p=−�

�

pPn�g,p� and En = �
p=−�

�

pPn�e,p� �A9�

which represent the ground and excited state contributions to
the average momentum, and observe that

�
p=−�

�

pPn�g,p ± 2� = �
p=−�

�

�p ± 2�Pn�g,p ± 2� � 2Pn�g,p ± 2�

= Gn � 2gn. �A10�

Once again, the recursion matrix is diagonalized by consid-
ering the combinations Gn=Nn

++Nn
− and En= �1−q�Nn

+−Nn
−,

�Nn+1
+

Nn+1
−  = �1 0

0 �1 − q�2��Nn
+

Nn
−  + � 0 1

�1 − q�2 0
��nn

+

nn
−  .

�A11�

The average momentum of the ensemble is hence given by

In,e0
= Gn + En = �2 − q�Nn

+

= 2�1 − q

2 − q
− e0� �1 − q�2n − 1

�1 − q�2 − 1
�2 − q� .

�A12�

Derivation of the mean-squared momentum follows the same
route. We define


n = �
p=−�

�

p2Pn�g,p� and En = �
p=−�

�

p2Pn�e,p� �A13�

so that the mean-squared momentum is given by �n
2=
n

+En− In
2. Since p2��p±2�2�4�P±2�+4, we have

�
p=−�

�

p2Pn�g,p ± 2� = �
p=−�

�

�p ± 2�2Pn�g,p ± 2�

� 4�p ± 2�Pn�g,p ± 2� + 4Pn�g,p�

= 
n � 4Gn + 4gn. �A14�

Diagonalization requires the combinations 
n=Hn
++Hn

− and
En= �1−q�Hn

+−Hn
−, giving
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�Hn+1
+

Hn+1
−  = �1 0

0 �1 − q�2��Hn
+

Hn
−  + 4� 0 1

�1 − q�2 0
��Nn

+

Nn
− 

+
4

2 − q
� 2�1 − q� − q

�1 − q�2q 2�1 − q�2��nn
+

nn
−  �A15�

and hence

�n,e0

2 = �0
2 + I0

2 − In
2 +

8�1 − q�
q�2 − q�

n + 4� 2�1 − q�2

q2�2 − q�2 +
1 − q

�2 − q�2

−
e0

2 − q
−

N0
−

q
���1 − q�2n − 1� . �A16�

Inserting In, taking I0=N0
−=0 and writing n0

−= �1−q� / �2−q�
−e0 hence gives

�n,e0

2 = �0
2 −

4

q2� 1 − q

�2 − q�2 �q2 − 3q + 3� −
q2 − 2q + 2

2 − q
e0 + e0

2�
+

8�1 − q�
q�2 − q�

n +
4�1 − q�2n

q2 
1 − q − �2 − q�e0 + 2e0
2�

−
4�1 − q�4n

q2 � �1 − q�2

�2 − q�2 − 2
1 − q

2 − q
e0 + e0

2� . �A17�

The probability of spontaneous emission in the period ending
with the �n+1�-th measurement is the sum of the probabili-
ties for the two half-periods,

dn,e0
= q�1 − en−1� + q�en−1 + q�1 − en−1�� = q�1 + q� − q2en−1.

�A18�

Taking the previously derived result for en and summing
over all periods gives an accrued number of spontaneous
decays

Dn,e0
= �

m=1

n

q�1 + q� − q2em−1

=
2q

2 − q
n + q2�1 − q

2 − q
− e0 �1 − q�2n − 1

�1 − q�2 − 1
. �A19�

Each complete cycle of an amplified process incurs two fur-
ther contributions to the impulse. The first—which accounts
for the conventional scattering force, and which we assign a
magnitude a—accompanies the initial selective excitation;
this is correlated with the subsequent amplified impulse, and
must therefore be taken into account explicitly. The second
results from the Dn,e0

spontaneous emissions during the pulse
train and the en,e0

emissions during subsequent relaxation
and, as the directions of the spontaneous recoils are uncorre-
lated to other impulses, these contributions to the variance
may be added directly. We take the spontaneous photon’s
contribution to the variance to be �, where for isotropic
emission �=1/3 for the x component of the momentum dis-
tribution and �=1 when the true three-dimensional tempera-
ture is calculated. Including these terms results in a total
impulse of

In,e0

�T� = e0�a + In,1� + �1 − e0�In,0 �A20�

and a variance given by

�n,e0

2�T� = e0�a + In,1�2 + �1 − e0�In,0
2 − �In,e0

+ ae0�2 + e0�n,1
2

+ �1 − e0��n,0
2 + ��e0Dn,1 + �1 − e0�Dn,0� + ��e0en,1

+ �1 − e0�en,0� . �A21�

We note that some aspects of this analysis have been covered
in a full quantum-mechanical density-matrix treatment �45�.

APPENDIX B: EFFECT UPON MOMENTUM
DISTRIBUTION

We now consider the effect of a pulse train upon a sample
of species with a distribution of velocities, which initially
undergo velocity-selective excitation with a momentum-
dependent probability P�p�, accompanied by the recoil a of
the conventional scattering force. The mean momentum fol-
lowing the pulse train of Appendix A will be given, extend-
ing Eq. �A20�, by

�p�� = �P�p��p + In,1 + a� + �1 − P�p���p + In,0��

= �p� + In,0 + �P�p���a + In,1 − In,0� , �B1�

where In,e0
is the mean impulse for an initial excitation prob-

ability e0 and the bra-ket notation indicates the average over
the initial velocity distribution, which is not explicitly de-
fined. Similarly, if all species with the same initial state were
to receive the same impulse, the mean squared momentum of
the final distribution would be given by

�p�2� = �P�p��p + In,1 + a�2 + �1 − P�p���p + In,0�2�

= �p2� + In,0
2 + 2�p�In,0 + �P�p���a2 + In,1

2

− In,0
2 + 2aIn,1� + 2�pP�p���a + In,1 − In,0� . �B2�

Combining these expressions leads, with a little rearrange-
ment, to the variance of the final momentum distribution,

�p�2� − �p��2 = �p2� − �p�2 + �P�p���1 − �P�p����a + In,1

− In,0�2 + 2��p − �p��P�p���a + In,1 − In,0� ,

�B3�

where the terms correspond to the variance of the initial dis-
tribution, the separation according to quantum state follow-
ing selective excitation, and cooling due to a correlation be-
tween the excitation probability and initial velocity.

To this final variance, we should now add heating contri-
butions from the spread about the mean impulse, �n

2, and the
recoils accompanying spontaneous emission during and after
the pulse train. If � is the contribution to the variance for
each spontaneous event, then the variance will be given by

�p�2� − �p��2 = �p2� − �p�2 + �P�p���1 − �P�p����a + In,1

− In,0�2 + 2��p − �p��P�p���a + In,1 − In,0�

+ �n,0
2 + �P�p����n,1

2 − �n,0
2 � + �
Dn,0 + �P�p��

�Dn,1 − Dn,0�� + �
en,0 + �P�p���en,1 − en,0�� .

�B4�
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In,e0
, �n,e0

2 , Dn,e0
, and en,e0

are the mean impulse, impulse
variance, mean number of spontaneous decays, and final ex-
citation probability for the pulse train, given in Appendix A;
a and � are the recoils accompanying the initial selective
excitation and subsequent spontaneous emission; �p2�− �p�2

corresponds to the initial temperature of the sample. The
mean probability of selective excitation, �P�p�� and the cor-
relation ��p− �p��P�p�� depend upon the initial velocity dis-
tribution and excitation selectivity.

APPENDIX C: OPTIMUM COOLING STRATEGY

We may now determine the optimum length of pulse train
for a given initial velocity distribution by setting to zero the
derivative of Eq. �B4� with respect to n. In the limit q→0,
we obtain

4n = a +
��p − �p��P�p��

�P�p���1 − �P�p���
�C1�

which, if the average probability of selective excitation
�P�p��= 1

2 , gives

4n = a + 4��p − �p��P�p�� �C2�

and hence a variance of

�p�2� − �p��2 = �p2� − �p�2 − 4��p − �p��P�p�� +
�

2
.

�C3�

For an initially Gaussian, Maxwellian velocity distribution of
temperature Ti,

D�p� =
1

p1
��

exp�− � p

p1
2� , �C4�

where p1
2=Ti /Tr in terms of the recoil temperature Tr

=�2k2 /2mkB, we find that �p2�= p1
2 /2. Taking the selective

excitation probability to be a step function

P�p� = �1 p � 0

0 p 	 0
� , �C5�

we obtain a final variance of

�p�2� − �p��2 =
p1

2

2
�1 −

2

�
 +

�

2
. �C6�

Although the velocity distribution will no longer be Gauss-
ian, the variance remains a measure of its average kinetic
energy and will indeed represent the temperature obtained if
the sample is allowed to come to thermal equilibrium. With
this caveat, we may may hence consider the temperature of
the distribution to have been reduced, if the term � /2 may be
neglected, by a factor of �= �1−2/��	0.36.

If the impulse accompanying the initial selective excita-
tion may be neglected in Eq. �C2�, the optimum number of
pulses becomes approximately

n0 = Š�p − �p��P�p�‹ = p1/2�� . �C7�

After relaxation of excited state atoms to the ground state
through spontaneous decay, the sample may once again be
cooled with a further newly-optimized pulse train. Strictly,
the optimum factor � depends upon the shape of the velocity
distribution, whose variance becomes increasingly domi-
nated by the small number of atoms with large velocities
remaining in the tail of the initial Gaussian. For practical
purposes, however, similar values of � will generally be re-
quired. After m cycles of selective excitation-amplification-
relaxation, the final temperature will be given roughly by

Tm = �mT0. �C8�

As each cycle occurs within the same spontaneous lifetime,
the time taken to achieve a given temperature hence depends
logarithmically, rather than linearly, upon the number of pho-
ton impulses required. Numerical results for cases in which
the decay probability q may not be neglected are given in
Fig. 4.
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