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Rubidium pump-probe spectroscopy: Comparison between ab initio theory and experiment
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We present a simple, analytic model for pump-probe spectroscopy in dilute atomic gases. Our model treats
multilevel atoms, takes several broadening mechanisms into account and, with no free parameters, shows excellent
agreement with experimentally observed spectra.

DOI: 10.1103/PhysRevA.81.023423 PACS number(s): 32.80.Wr, 32.80.Xx, 32.30.−r, 32.70.Fw

I. INTRODUCTION

There has been much interest recently in the effect of the
propagation of a laser beam through dilute vapors of alkali
metal atoms [1–5] due to their application in laser cooling
[6,7], chip-scale atomic clocks and magnetometers [8,9],
laser stabilization [10–12], and electromagnetically induced
transparency [13]. In order to understand the spectra, several
models have been proposed which accurately predict the
Doppler-broadened and sub-Doppler absorption spectra of a
dilute vapor with weak and strong probe beams [1,14–18].
The common approach of numerically solving the semiclas-
sical density matrix equations, however, requires intensive
computation [14]. This may be unnecessarily complicated for
several applications in which coherence effects are negligible
and beam powers relatively low, such as studies of optical
pumping [5], transit- [1,5,15,17] and power-broadening, and
number density measurements. In this paper we show that a
simple ab initio model based upon rate equations can predict
both Doppler-broadened and sub-Doppler spectra with high
accuracy for a large range of beam powers and widths.

Our model has been developed primarily to focus upon
dilute vapors of alkali metal atoms, specifically rubidium, but
the results should be generally applicable to any dilute vapor.
We use the Einstein rate equations to calculate the steady state
population densities and therefore spectra are assumed to be
measured on timescales greater than any coherence effects
[18]. The model also assumes collimated, pump, and probe
beams, whose spectral widths are less than the spontaneous
decay rates of the atoms.

This paper begins with a short review of the theory behind
saturated absorption spectroscopy; the next section covers
the effects of optical pumping on absorption lineshapes with
multilevel atoms, which accounts for the majority of observed
features. We then compare the result of this simple model with
experimental pump-probe spectra of rubidium and show that
the fit is accurate, even without any free parameters.

II. PUMP-PROBE THEORY

The absorption of a weak probe beam propagating in the
z direction through a dilute gas is characterized by the Beer-
Lambert relation [19]

dI (ω)

dz
= −NV σ (ω)I0. (1)
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where NV is the number density of atoms, I0 is the incident
probe intensity, and σ (ω) is the absorption cross section for the
electric dipole transition i → k, in which i is the ground state
and k is the excited state, and the difference in state energies
Ek − Ei = h̄ωik:

σ (ω) = h̄ωik

c
(Bikni − Bkink) L(ω)dv, (2)

where ni and nk are the fractional populations of the ground
and excited states, Bik and Bki are the Einstein coefficients
for the absorption and stimulated emission of a photon,
respectively, and

L(ω) = γ /2π

(ω − ωik)2 + γ 2

4

(3)

is the normalized Lorentzian function which characterizes
the atom’s response to the incident field, where ω is the
frequency of the laser and γ = 1/τ is the natural linewidth
of the transition which has the excited state lifetime τ .

In common with many texts, we set the excitation rate to be
proportional to the energy density in each spectral mode ρ(ω)
for a broadband light source. For high resolution spectroscopy
we require the measuring tool—the laser—to have a finer
resolution than the subject under investigation and therefore
the spectral linewidth of the laser must be �ω < 1/τ . Hence
the spectral energy density of a nearly monochromatic beam
with an electric field amplitude E may be written as [20]

ρ(ω) = 1

2
εE2L(ω) = I

c
L(ω), (4)

which has already been assumed in Eq. (2). For states with
degeneracy gi,k , the Einstein coefficients are

Bik = πe2

ε0h̄
2gi

∑
mF

|µik|2 = gk

gi

Bki, (5)

where e is the electron charge, ε0 is the vacuum permittivity,
and |µik| = |µki | = Cik|〈Jk||�r||Ji〉| are the dipole matrix
elements for electric dipole transitions between states with
spin-orbit angular momentum Ji,k , in which

|〈Jk||�r||Ji〉| = µ0 =
√

2Jk + 1

2Ji + 1

√
3πε0h̄c3

τω3
ik

(6)

is the reduced dipole moment [3,21] and Cik are the Clebsch-
Gordan coefficients for the mF sublevels which define the
relative strength for each transition. For unpolarized beams
with no external magnetic fields (no quantization axis) the
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dipole matrix elements are∑
mF

|µik|2 = µ2
0

∑
mF

C2
ik. (7)

Values of
∑

mF
C2

ik can be obtained from tabulated results [22]
or via a lengthy calculation [23].

It is common in many texts to include a prefactor of 1/3
in Eq. (5) to average over the three possible orientations of
the atom with no quantization axis [19,24,25]. For degenerate
states, the summation over all mF sublevels yields the same
value for all polarizations and therefore in Eq. (4) we assume
linear polarization and avoid the 1/3 prefactor.

The lineshapes of the resonances will be inhomogeneously
broadened by the motion of the atoms. For a dilute vapor,
the atoms have a mean free path greater than the dimensions
of the cell, therefore collisions are negligible and the spread
of velocities will follow a Maxwell-Boltzmann distribution
with a mean temperature, T , equal to that of the cell
walls. We therefore have the distribution of atoms with
velocity v,

fD(v) = 1

u
√

π
exp

(−v2

u2

)
(8)

and mean speed,

u =
√

2kBT

M
, (9)

where M is the atomic mass and kB is the Boltzmann constant.
The change in intensity for a weak probe beam through a dilute
vapor is therefore

dI (ω)

dz
= −h̄ωikγ

2πc
NV I0Bik

∫ +∞

−∞

fD(v)
(
ni − gk

gi
nk

)
(ω − ωik − kv)2 + γ 2

4

dv,

(10)

where kv = (ω/c)v is the Doppler shift which has been
included into the Lorentzian lineshape

L(ω, v) = γ /2π

(ω − ωik − kv)2 + γ 2

4

(11)

and similarly with ρ(ω, v). The integrand has a Voigt lineshape
which cannot be solved analytically but may be calculated from
tabulated values [3].

A. Saturation

The common experimental arrangement is for a strong
pump beam and weak probe beam, derived from the same
laser and hence equal in frequency, to propagate in op-
posite directions through the atomic sample. The pump
beam affects the population difference, ni − gk

gi
nk , and thus

reduces the probe absorption near resonance. Only atoms
which travel nearly perpendicular to both beams, and thus
have a zero velocity component along the beam direction,
will be pumped and probed simultaneously, and therefore
narrow ‘Lamb dips’ form in the Doppler-broadened profile at
resonance [25].

Using the Einstein rate equations for a closed, degenerate
two level system (ni + nk = 1, gk = gi), the steady state

population difference is

ni − nk =
(

1 + 2BkiL(ω,−v)IP

cγ

)−1

(12)

=
(

1 + IP

Iik

πγ

2
L(ω,−v)

)−1

, (13)

where IP is the pump beam intensity, and

Iik = πcγ 2

4Bki

= h̄2ε0cγ
2

4q2|µik|2 (14)

is the saturation intensity at which nk = 1/4 on resonance
and the negative sign for the velocity in Eq. (12) reflects
the counter-propagating geometry. As the pump intensity
increases, the population difference tends to zero, the atomic
sample becomes transparent to further excitation, and thus the
probe beam shows decreased absorption.

This model is commonly presented in textbooks [19,24] and
is known as saturated absorption spectroscopy. Unfortunately
it fails to model realistic systems in two important ways.
Firstly, the system is not closed as atoms may enter or leave
the beams; this limits the interaction time and rethermalizes
the population difference. Secondly, closed two-level systems
are very rare and the atoms will generally have several ground
and excited states into which they may be optically pumped.
If these additional states are separated by frequencies greater
than the laser linewidth, then once these states are populated
the atom will become transparent to the laser radiation. This
process can occur even at low pump intensities and therefore
is a significant factor affecting the depth of the sub-Doppler
features [5].

B. Optical pumping

The simplest multilevel system involves a single excited
state |c〉 which may decay into two ground states |a〉 and |b〉,
as shown in Fig. 1. The excited state decays at a total rate γc

but the fractional rates into each ground state (branching ratio)
depend upon the ratio of Clebsch-Gordan coefficients, γca

FIG. 1. (Color online) A simple three level system with optical
pumping on |a〉 → |c〉 transition. The steady state populations in
each state depend upon the decay fractions γik and the populations of
atoms entering and leaving the beam at rate 	0.
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and γcb, where

γca = C2
ac

C2
ac + C2

bc

γc, (15)

γcb = C2
bc

C2
ac + C2

bc

γc. (16)

Atoms drift into and out of the beam at a rate 	0, entering
with the equilibrium population distribution and leaving with
the optically–pumped distribution. This is discussed further in
Sec. II D.

We consider the absorption from state |a〉, so that any
population excited from |b〉 is negligible. The rates of change
of the state populations are therefore

dna

dt
= −na[Bacρ(ω, v) + 	0]

+ nc[Bcaρ(ω, v) + γca] + Na	0, (17)
dnb

dt
= 	0(−nb + Nb) + ncγcb, (18)

dnc

dt
= naBacρ(ω, v) − nc[Bcaρ(ω, v) + γc + 	0], (19)

where Na and Nb are the fractional equilibrium populations
of states |a〉 and |b〉, respectively, when Bac = 0.

The equilibrium populations depend upon the thermal
distribution of energies [20,24], but for most atoms the ground
state splitting is of the order GHz, while the excited state is
separated by hundreds of THz from the ground state. The
mean energy per degree of freedom is 1

2kBT , which at room
temperature corresponds to a frequency of THz and so we
may assume the ground states to be equally populated and
the excited state population to be negligible. The equilibrium
population of state |a〉 is therefore

Na = ga

ga + gb

NV . (20)

When the rate of the laser scanning across the resonance
is much slower than any depopulation mechanisms in the
system, we may assume that the populations have reached
their steady state values (ṅa = ṅb = ṅc = 0) and hence
become

na = nc [Bcaρ(ω, v) + γca] + Na	0

Bacρ(ω, v) + 	0
, (21)

nc = naBacρ(ω, v)

γc + 	0 + Bcaρ(ω, v)
, (22)

where we assume |ω − ωca| � |ω − ωcb| and hence may
neglect nb. This makes the derivation valid for any open
two-level system. We then substitute Eq. (22) into Eq. (21)
and rearrange to find na:

na = Na

1 + gc

ga
βacαac

, (23)

where

αac =
(

1 + γc + 	0

Bcaρ(ω, v)

)−1

(24)

is the saturation parameter, and

βac = 1 + γc − γca

	0
(25)

is the optical pumping parameter which enhances the satura-
tion of the spectra. As derived in Sec. II A, the absorption
cross section for the incident beam is proportional to the
population difference between the ground and excited states,
Bacna − Bcanc which we may find in terms of Na by using
Eq. (22)

Bacna − Bcanc = BacNa

(
1 − αac

1 + gc

ga
βacαac

)

= BacNa�N, (26)

where �N is the population difference caused by the pump
beams. This may be rearranged into a form similar to
Eq. (13):

�N =
(

1 − αac

1 + gc

ga
βacαac

)
=

[
1 + IP

2IR
ac

L(ω,−v)

]−1

, (27)

in which IR
ac is the reduced saturation intensity reported in

the literature [16,24] which is valid for an open two level
system:

IR
ik = Iik

(
1 + 	0/γk

2 + (γk − γki)/	0

)
. (28)

The numerator in the first term of Eq. (27) accounts for the
steady state population pumped into the excited states and
the denominator accounts for the population pumped into the
ground states.

C. Multilevel atoms

Equation (26) may be intuitively extended to include
multiple ground (i) and excited (k) levels.

�N (v) =
∑

i

�Ni(v) =
∑

i

Ni

1 − αik(v)

1 + gk

gi
βikαik(v)

, (29)

αik(v) =
∑

k

(
1 + γj + 	0

BP
kiρ(ω, v)(ω, v)

)−1

, (30)

βik =
∑

k

1 + γk − γki

	0
. (31)

The absorption of the probe beam is therefore

dI (ω)

dz
= − h̄γ

2πc
NV

∫ +∞

−∞
fD(v)�N (−v)

∑
i,k

B0
ikρ(ω, v)dv.

(32)

Because of optical pumping even at low intensities, the pump
beam can no longer be assumed to have a negligible effect
upon the spectra. Therefore, the pumping rates in the above
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model are given by

BP
kiρ(ω, v) = γ 2

8cgi

(
IP

Iik

γ /2

(ω − ωik − kv)2 + (
γ

2

)2

+ I0

Iik

γ /2

(ω − ωik + kv)2 + (
γ

2

)2

)
(33)

and

B0
ikρ(ω, v) = γ 2

8cgi

(
I0

Iik

γ /2

(ω − ωik + kv)2 + (
γ

2

)2

)
. (34)

Note that for Eq. (33) the Doppler shift for the probe beam is
opposite to that of the pump beam.

This model may be simplified by considering the steady
state population for open or closed transitions with fast (MHz)
decay rates. Off-resonant pumping into the dark state must
be included both to model crossover peaks correctly [24] and
because an equilibrium is set up between pumping and transit
of atoms into the beam (see Fig. 2). For an open transition the
atoms will be pumped into the dark state before a significant
population builds up in the excited state, so one may use the
following form:

�N =
(

1 +
∑

k

gk

gi

αikβik

)−1

. (35)

 0
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FIG. 2. (Color online) The effect of optical pumping in multilevel
atoms. The dashed line shows the population difference using
Eq. (27), i.e., no optical pumping. The lower solid (blue) line shows
the population difference for the 85Rb F = 3 → F ′ = 3 transition
in which optical pumping significantly empties the upper ground
state at intensities much lower than saturation. The upper solid (red)
line shows the population difference for the 85Rb F = 3 → F ′ = 4
transition which is normally considered ‘closed’; we would expect the
population to follow the dashed line and equal 1/2 at the saturation
intensity. In the absence of off-resonant pumping the population will
tend toward an equilibrium with the transit rate 	0 (�N ∼ 0.44 in
this instance) and so the population at saturation would equal one half
of this value from unity (1 − 1

2 0.44 = 0.72). The equilibrium value
is not reached at high intensities due to increased off resonant optical
pumping, but evidence for this can be seen in the slight shoulder
around IP /Iik = 100.

For a closed state (such as 85Rb F = 3 → F ′ = 4) a significant
population will build up in the excited state, but the off-
resonant excited state populations will be negligible. In such
a situation off-resonant optical pumping into the dark ground
states reduces the equilibrium population as shown in Fig. 2
and Eq. (29) may then be simplified to the form

�N = 1 − αik

1 + ∑
k

gk

gi
αikβik

. (36)

D. Transit broadening

Transit broadening is normally considered in the context of
a limit to the interaction time and hence to the fundamental
resolution of the spectra. For a Gaussian laser beam with a
1/e2 radius R passing through a dilute gas of atoms with a
mean velocity u, the standard result [24,26] for the transit rate
of an atom through the beam is

	0 = 2u
√

ln 2

R
. (37)

However, we can see in Eq. (25) that the transit rate has a
significant effect on the optical pumping rate. It is common
practice to use large beams to reduce the transit broadening
but this has the effect of increasing the time during which
atoms may be optically pumped into the dark state, and hence
acts to decrease the resolution. In Fig. 2 we see that optical
pumping occurs at intensities much lower than Iik; in fact, the
atom can be pumped into the dark state |b〉 with the absorption
of a single photon and so this complicates the calculation of
the beam width. If we assume that significant optical pumping
occurs at a specific intensity, Iϕ , and calculate the width of
beam at this intensity as the total pump intensity is changed,
the transit rate becomes

	ik =
⎧⎨
⎩	0

[√
1
2 ln

(
IP

Iϕ

) ]−1

if IP > Iϕ

	0 if IP � Iϕ

. (38)

The transit rate here depends upon the specific transition
(i → k), since the apparent increase of beam width will depend
upon the individual transition strength. It is not obvious what
value of Iϕ of should be used; however in the following
model we find empirically that the reduced saturation intensity
(Iϕ = IR

ik ) fits the data well.

E. Additional broadening mechanisms

The experimental setup may introduce extra broadening of
the spectral features and although they are usually much less
than the natural and Doppler linewidths, they can be on the
order of the transit rate.

The following broadening mechanisms have a Lorentzian
lineshape or effect the frequency detuning, therefore may be
included to our model by summation with the natural decay
rate [20].

1. Laser linewidth

As mentioned earlier, the resolution of the spectral features
is constrained by the tool we use to measure them: the laser.

023423-4



RUBIDIUM PUMP-PROBE SPECTROSCOPY: COMPARISON . . . PHYSICAL REVIEW A 81, 023423 (2010)

FIG. 3. (Color online) Hyperfine structure of 85Rb and 87Rb.

Diode lasers are a common tool for pump probe spectroscopy
and may have linewidths down to the hundreds of kHz region
with the addition of an external cavity. We assume a Lorentzian
spectral laser lineshape with a full width at half maximum
(FWHM) 	L in angular frequency units.

2. Geometrical broadening

The sub-Doppler resolution depends upon atoms traversing
the beams at a perpendicular angle. Therefore, if the beams
are not exactly antiparallel they will sample a nonzero atomic
velocity component and hence decrease the resolution. In the
experimental arrangement described in Sec. IV, perfect beam
overlap is achieved using a polarizing beam-splitting cube. For
some experiments the polarizations of each beam may need
to be controlled independently, and back-reflections into the

TABLE I. Rubidium model parameters for linear polarization and
degenerate hyperfine levels.

Fi Fk Iik(mW cm−2) C2
ik γki (γ )

85Rb 3 4 3.894 1 1
3 3 9.012 35/81 5/9
3 2 31.542 10/81 2/9
2 3 8.046 28/81 4/9
2 2 6.437 35/81 7/9
2 1 8.344 1/3

87Rb 2 3 3.576 7/9 1
2 2 10.013 5/18 1/2
2 1 50.067 1/18 1/6
1 2 6.008 5/18 1/2
1 1 6.008 5/18 5/6
1 0 15.020 1/9 1

FIG. 4. (Color online) The pump-probe spectroscopy apparatus
used for the spectra in Sec. V. Approximately 3 mW is picked off
from the external cavity diode laser (ECDL) with a beam-splitter plate
(BSP). The ECDL is protected from back reflection by a Faraday
Optical Isolator (FOI), so that the beam may be perfectly overlapped
using a polarizing beam splitter cube (PBSC). The linear polarization
of the probe (left to right through the vapor cell) and pump (right to
left) beams are rotated by half-wave plates (HWP) so that the pump
is transmitted and the probe reflected by the PBSC. The power of
the pump beam is controlled with a variable neutral density filter
(VND).

laser cavity may be unwanted, favoring a geometry in which
the counter-propagating beams cross at a nonzero angle θ . This
results in a broadening [26]

	G = (�kP − �k0) · �v = 2uωik

c
sin

(
1
2θ

)
, (39)

where �kP and �k0 are the pump and probe wave vectors,
respectively.

3. Beam collimation

An uncollimated beam passing through the vapor cell will
result in a variation of transit time along the cell. Wavefront
curvature also broadens the Lamb dip in much the same manner
as geometrical broadening. To limit this effect the radius
of curvature of the wavefronts must be much greater than
kR2/4 [25].

4. Collisional broadening

We have limited our model to dilute gases in which colli-
sions during the interaction time are negligible. In dense gases
the collisional cross-section can be as large as the absorption
cross section and can affect the spectra by broadening and
shifting the peak. Collisions may also affect the distribution
of population amongst the ground states. The magnitude and
nature of the effect depend upon density, temperature and
collisional partners (i.e., nonidentical atoms in the case of
a buffer gas) [20].

III. RUBIDIUM

Natural rubidium occurs in two stable isotopes, 85Rb and
87Rb, with fractional abundances, fI , of 0.2783 and 0.7217,
and atomic masses 84.912 and 86.909, respectively [27]. The
ground state is 5S1/2, with nuclear moment I = 5/2 for 85Rb
and I = 3/2 for 87Rb, and orbital angular momentum L = 0
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FIG. 5. (Color online) Normalized pump probe transmission spectra of 85Rb F = 3 → 4 (right-hand dip) and 87Rb F = 2 → 3 (left-hand
dip) for pump powers of 20 µW, 100 µW, 500 µW, and 2500 µW, relating to a,b,c,d, respectively. The experimental data are shown by black
dashes and the theoretical curves by the solid red line. Plots i-1,2 are magnified sections of the full absorption spectra i-3, and i-4 is the
difference between the data and model. The large deviations in c,d-3,4 above +0.5 GHz are due to the nonlinear scanning of the piezo near a
turning point.

and spin S = 1/2. The excited state under investigation is
5P3/2 state with L = 1 and the transition between these states
is known as the D2 line. Due to the nonzero nuclear angular
momentum each state is split into 2J + 1 hyperfine levels, each
of which has 2(2I + 1) magnetic sublevels. Figure 3 shows the

hyperfine structure of both isotopes and the energy splitting
between levels. The Clebsch-Gordan coefficients, saturation
intensity [Eq. (14)] and fractional decay rates γik used in the
model are shown in Table I. The natural lifetime is 26.25 ±
0.07 ns [28] for both isotopes.
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Rubidium has a melting point of 39.3◦C and the number
density is then given by [29]

NV = fI

kBT
133.323 × 10pj , (40)

where the exponent subscript j = S,L corresponds to solid
and liquid rubidium, respectively, with

pS = −94.04826 − 1961.258

T

− 0.03771678 × T + 42.57526 ln(T ), (41)

pL = 15.88253 − 4529.535

T

+ 0.00058663 × T − 2.99138 ln(T ). (42)

IV. PUMP-PROBE APPARATUS

We have tested our model experimentally with rubidium
vapor in a pump-probe apparatus, normally used to stabilize
diode lasers for a magneto-optical trap, shown in Fig. 4. The
diode laser had an external cavity in the Littrow configuration
with a beam diameter of 2.1 ± 0.1 mm in the vertical plane.
The beam was elliptical with a horizontal width equal to twice
the height; the greatest transit broadening thus results from
the narrower dimension and the model therefore uses the above
value. The beams were overlapped through the vapor cell by
sending the pump beam through a polarizing beam splitter
cube (PBSC); the counter-propagating probe beam had a linear
polarization perpendicular to the pump beam and was reflected
by the PBSC onto the photodiode. This layout allowed perfect
overlap of the beams and a reduced footprint of the apparatus.

The laser frequency was scanned via rotation of the external
cavity grating with a piezoelectric transducer and spectra
were averaged over three scans. The scans were not linear,
so the frequency axis was calibrated using the 12 resonance
and crossover peaks (see Fig. 3) by fitting to a fourth-order
polynomial; the standard deviation of the fitted peaks from
tabulated values was < 400 kHz. The probe power was kept
at 1 µW and the laser linewidth was 1.0 ± 0.2 MHz [28].
The vapor cell had length of 75 mm and a temperature of
18.0 ± 0.1◦C. No attempt was made to null the Earth’s or
nearby magnetic fields.

V. COMPARISON BETWEEN EXPERIMENT
AND THEORY

The experimentally measured pump probe spectra for the
upper ground states of 85Rb and 87Rb are shown together
with predictions of the theoretical model in Fig. 5i, where i =
a, b,c,d relate to the pump powers 20 µW, 100 µW, 500 µW,
and 2500 µW, respectively. Figure 5 is split into four parts: plot
i-3 shows the full absorption spectrum with the experimental
data in black and the theoretical curves in red, plots i-1,2 show
a magnified sections of the Lamb dips (i-1 = 87Rb, i-2 = 85Rb)
and plot i-4 shows the experimental data subtracted from the
theoretical curves (residuals).

It is apparent that our theoretical model accurately predicts
the height and width of each absorption line. The residuals
have a standard deviation of less than 1%, and much of this is
due to experimental noise and calibration errors. In Figs. 5a-4
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FIG. 6. (Color online) The effect of beam width on sub-Doppler
features. The dashed line and upper solid (red) line correspond to the
Fig. 5d-2. The middle solid (blue) line shows the same model but
without the additional beam broadening factor from Eq. (38). The
lower solid (green) line includes the additional broadening factor but
assumes a 1/e2 beam width twice that in the red plot. The laser power
remains the same for each plot.

and 5b-4, the noise is dominated by a sinusoidal signal from
power line pickup.

Our model appears to slightly overestimate the height of
the Lamb dips at low powers. This may be due to errors in the
beam power measurement or the elliptical cross section of the
laser beams. This latter point complicates the effect of beam
width on optical pumping, and the arbitrary value used for Iϕ

in Sec. II D. The effect of these values is shown in Fig. 6.

VI. CONCLUSION

A simple model of pump-probe spectroscopy based on the
rate equations has been presented and compared against the
experimental spectrum of rubidium. Our model can describe
multilevel atoms and fits the data well with the residual
difference less than 1% over a large range of pump powers.
The model is valid for any dilute gas when coherent effects
are negligible, and accounts for finite laser linewidth, optical
pumping and transit time broadening.

The most significant effect upon the spectral features is
the optical pumping during the atom’s transit across the
beam. As opposed to saturation broadening, which is due
to the equalization of populations in the ground and excited
states preventing further absorption, optical pumping can
transfer population into dark states, which also prevents further
absorption but may occur for a single photon absorption. The
time taken by the atom to transverse the beam significantly
affects the optical pumping and therefore careful attention
must be made in defining the beam width.
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