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Composite pulses for interferometry in a thermal cold atom cloud
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Atom interferometric sensors and quantum information processors must maintain coherence while the evolving
quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and
uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed
to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state
manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and
follow the state evolution within them. The agreement between measurements and simple predictions shows
the underlying coherence of the atom ensemble, and the inversion infidelity in a ∼80 μK atom cloud is halved.
Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater
interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity
of quantum technologies from inertial sensing and clocks to quantum information processors and tests of
fundamental physics.
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I. INTRODUCTION

Emerging quantum technologies such as atom interfero-
metric sensors [1], fountain atomic clocks [2], and quantum
information processors [3] rely on the precise manipulation
of quantum state superpositions, and require coherence
to be maintained with high fidelity throughout extended
sequences of operations that split, transform, and recombine
the wave function. In practice, however, inhomogeneities
lead to uncertainty in the rates and phase-space trajectories
of these operations. To reduce the sensitivity of the intended
operation to variations in laser intensity, atomic velocity, or
even gravitational acceleration [4], several approaches have
been proposed, from quantum error correction [5] to shaped
pulses [6] and rapid adiabatic passage [7–9]. Just as squeezing
does for an individual wave function [10], these techniques
aim to reduce the uncertainty projected within an ensemble
distribution on the parameter of interest.

NMR spectroscopists have over many years developed
“composite pulse” techniques to compensate for systematic
variations in the speed and trajectory of coherent operations,
and thus refocus a quantum superposition into the desired
state [11–14]. The various pulse sequences differ in their
tolerance of “pulse-length” (or coupling-strength) and “off-
resonance” errors and correlations between them, and in the
operations for which they are suitable and the properties whose
fidelity they protect. All are in principle applicable to the
coherent control of any other two-state superposition, and such
techniques have been applied to the manipulation of supercon-
ducting qubits [15], diamond NV color centers [16], trapped
ions [3,17–21], microwave control of neutral atoms [22–26],
and even the polarization of light [27].

Perhaps the simplest composite pulse sequence, based on
Hahn’s spin echo [28], inserts a phase-space rotation between
two halves of an inverting “π pulse” to compensate for system-
atic variations in the coupling strength or interpulse precession
rate. A number of researchers have applied such schemes
to optical pulses in atom interferometry, using the π pulse

also to ensure proper path overlap analogous to the mirrors
of a Mach-Zehnder interferometer. Using stimulated Raman
transitions from a single Zeeman substate in a velocity-selected
sample of cold Cs atoms, Butts et al. [29] extended this scheme
by replacing the second π/2 pulse with one three times as long,
thus forming a WALTZ composite pulse sequence [30] that, with
appropriate optical phases, is tolerant of detuning errors and
hence the Doppler broadening of a thermal sample. Following
the proposal of McGuirk et al. [31] that composite pulses could
withstand the Doppler and field inhomogeneities in “large-
area” atom interferometers, in which additional π pulses in-
crease the enclosed phase-space area to raise the interferometer
sensitivity, Butts et al. showed that the WALTZ pulse increased
the fidelity of such augmentation pulses by around 50%.

In this paper, we use velocity-sensitive stimulated Raman
transitions to compare the effectiveness of several established
pulse sequences on an unconfined sample of 85Rb atoms,
distributed across a range of Zeeman substates, after release
from a magneto-optical trap. We explore the CORPSE [32],
BB1 [33], KNILL [34], and WALTZ [30] sequences, determine
both the detuning dependence and the temporal evolution
in each case, and show that the inversion infidelity in a
∼80 μK sample may be halved from that with a basic “square”
π pulse. Comparison with simple theoretical predictions
shows the underlying coherence of the atomic sample, and
suggests that if cooled towards the recoil limit such atoms
could achieve inversion fidelities above 99%. Our results
demonstrate the feasibility of composite pulses for improving
pulse fidelity in large-area atom interferometers and encourage
the development of improved pulse sequences that are tailored
to these atomic systems [35]; they also open the way to
interferometry-based optical cooling schemes such as those
proposed in [36] and [37].

II. EXPERIMENT

We explore a popular atom interferometer scheme, used to
measure gravitational acceleration [1,38], rotation [39], and
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FIG. 1. (Color online) Energy levels (a) for stimulated Raman
transitions in 85Rb, and (b) individual dipole-allowed Raman routes
for atoms initialized in the different Zeeman mF sublevels, where the
counterpropagating Raman beams are opposite-circularly polarized
σ+ − σ−. The relative transition strengths, calculated from the
Clebsch-Gordan coefficients, normalized to the 0–0 transition, are
given for each route.

the fine-structure constant [40], in which stimulated Raman
transitions [41] between ground hyperfine states provide the
coherent “beam splitters” and “mirrors” to split, invert, and
recombine the atomic wave packets; motion, acceleration, or
external fields then induce phase shifts between the interfer-
ometer paths that are imprinted on the interference pattern at
the interferometer output. Our experiments are performed on a
cloud of about 2 × 107 85Rb atoms with a temperature of 50–
100 μK, and the 780 nm Raman transition is driven between
the F = 2 and F = 3 ground states [Fig. 1(a)]. The two
laser fields are detuned (�) from single-photon resonance by
many GHz to avoid population of, and spontaneous emission
from, the 5P3/2 intermediate state. Following extinction of the
lasers and magnetic fields of the conventional magneto-optical
trap, the atoms are prepared in the 5S1/2, F = 2 state in a
distribution across the five Zeeman states mF = −2, · · · , + 2,
which with the magnetic field off are degenerate to within
5 kHz.

We use counterpropagating Raman beams, which impart
twice the impulse of a single-photon recoil and incur a
Doppler velocity dependence that, at low intensities, we use
to characterize the atom cloud velocity distribution, as shown
in Fig. 2. The Raman pulse sequence is then applied and the
population of the F = 3 level is determined by monitoring
the fluorescence after pumping to the 5P3/2 F = 4 level. If
the detuning � is large compared with the 5P3/2 hyperfine
splitting, �mF = ±2 transitions are eliminated and two
polarization arrangements are of interest. Opposite-circularly
polarized Raman beams drive σ+ (or σ−) dipole-allowed
transitions via the Raman routes shown in Fig. 1(b), where,
for angular momentum to be conserved, �mF = 0 for the
Raman transition regardless of the quantization axis, but the
different coupling strengths lead to different light shifts for
different mF substates, thus lifting their degeneracy. With
orthogonal linear polarizations (π+ - π−), which correspond
to superpositions of σ+ and σ− components, the two �mF = 0
components add constructively, making the mF dependence of

FIG. 2. (Color online) Doppler-broadened Raman line
shape [54] after the molasses phase. Measured data (circles)
match a simulation (dashed) for a double Gaussian with similar
populations in the central peak (4.8 μK) and broader background
(83 μK). δ is the Raman detuning from the light-shifted hyperfine
splitting. (Inset) Deduced atom cloud velocity distribution; vR is the
Raman recoil velocity. The mean temperature is 45 μK.

the light shift disappear, and maintaining the degeneracy of the
substates. For parallel linear polarizations (e.g., π+ - π+), the
�mF = 0 components cancel. A more detailed description of
the experimental setup and procedures is given in Appendix A.

The Raman coupling strengths and resonance frequencies
depend on the hyperfine substate [shown in Fig. 1(b)], the
atom’s velocity, and, via the light shift, the intensity at the
atom’s position within the laser beam. These inhomogeneities
lead to systematic errors in the manipulation processes and
hence dephasing of the interfering components, limiting the
interferometric sensitivity.

The effects of experimental inhomogeneities are apparent in
Fig. 3(a), which shows Rabi flopping in a Zeeman-degenerate
atom cloud at �eff ≈ 2π × 200 kHz, where the mean upper
hyperfine state population |c2|2 is measured as a function of
Raman pulse length t . The atoms dephase almost completely
within a single Rabi cycle, and the upper state population
settles at a transfer fraction of 0.28. The peak transfer fraction
is about 0.5. The solid curves of Fig. 3 are numerical simu-
lations (details given in Appendix B) for equally populated
mF substates of the F = 2 hyperfine state, with uniform
illumination and a velocity distribution corresponding to a
superposition of two Gaussians as in Fig. 2, with parameters
given in Table II. Intensity inhomogeneities are included at
the observed level of ∼7% and wash out minor features but
contribute little to the overall dephasing.

A common solution [29] to the problem of dephasing is
to spin-polarize the atomic ensemble into a single Zeeman
substate, and preselect a thermally narrow (T < 1 μK) portion
of its velocity distribution before the Raman pulses are applied.
Both of these processes however reduce the atom number and
hence the signal-to-noise of the interferometric measurement.
Adiabatic rapid passage offers inhomogeneity tolerant popu-
lation transfer from a defined initial state, but is inefficient for
the recombination of superpositions of arbitrary phase [8,42].
Composite pulses can in contrast operate effectively, in the
presence of inhomogeneities, on a variety of superposition
states.
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FIG. 3. (Color online) Upper hyperfine state population |c2|2 as
a function of Raman interaction time t : (a) regular Rabi flopping;
(b) Rabi flopping with rotary echoes; (c) highly-sampled data
for the indicated portion of (b). Circles are experimental data;
lines are numerical simulations, with (green/light-gray) and without
(red/dark-gray) phase noise. An example Bloch vector trajectory,
starting from |1〉 and undergoing the rotary echo 3600360180 in
the presence of pulse-length and off-resonance errors, is shown (d)
before (light-blue/light-gray arrow), during (dots), and at the end of
(dark-blue/dark-gray arrow), 3600; and (e) before, during and after
360180, at which point the Bloch vector is realigned with |1〉. The
red/mid-gray arrow is the field vector, around which the Bloch vector
rotates.

III. COMPOSITE ROTATIONS FOR
ATOM INTERFEROMETRY

A. Bloch sphere notation

Coherent operations in atom interferometry may be visu-
alized on the Bloch sphere, whereby the pure quantum states
|1〉 and |2〉 lie at the poles and all other points on the sphere
describe superpositions with various ratios and phases [43].
Raman control field pulses correspond to trajectories of the

two-level quantum state vector |ψ〉 on the surface of the sphere.
For constant intensities and frequencies, these are unitary
rotations, and the unitary rotation propagator acting on |ψ〉
takes the form [44]

U (θ,φ,α) = cos

(
θ

2

)
1 − i sin

(
θ

2

)
[σx cos(φ) cos(α)

+ σy sin(φ) cos(α) + σz sin(α)], (1)

where σx,y,z are the Pauli spin matrices, and the desired
rotation, azimuth, and polar angles θ , φ, and α are achieved by
setting the interaction time, phase, and detuning of the control
field, respectively. Resonant control fields cause rotations
about axes through the Bloch sphere equator (α = 0), and
result in Rabi oscillations in the state populations as functions
of the interaction time; off-resonant fields correspond to
inclined axes.

The pulse sequences explored here all use fields that are
set to be resonant for stationary atoms, so we assume α to be
zero and write θφ ≡ U (θ,φ,0) to represent a rotation defined
by the angles θ and φ (written in degrees). A sequence of
such rotations is written as θ

(1)
φ1

θ
(2)
φ2

. . . where chronological
order is from left to right. Two pulses commonly used in atom
interferometry are the “mirror” π pulse, represented as the
rotation 180φ , and the “beam-splitter” π

2 pulse, represented as
90φ . On the Bloch sphere, these correspond to half and quarter
turns of the state vector about an equatorial axis.

B. Rotary echoes

A basic means of reducing dephasing in Rabi flopping is
the rotary echo [23,45], which may be considered the simplest
composite rotation. Reminiscent of Hahn’s spin echo [28],
this is a repeated application of the sequence θφθφ+180; when
θ = 360◦, as illustrated in Fig. 3(d), the 180◦ phase shift
every whole Rabi cycle causes a periodic reflection of state
vector trajectories and realignment, or echo, of divergent
states. Figure 3(b) shows the remarkable reduction in Rabi
flopping dephasing obtained with this technique, and the good
agreement between experiment and simulation demonstrates
the enduring coherence for individual atoms. Simulations for
the measured velocity distribution and a Rabi frequency �eff =
2π × 200 kHz (where tπ ≡ π/�eff is the pulse duration for
optimal ensemble inversion) show flopping with an exponen-
tially falling contrast with a time constant of about 250 μs,
equivalent to 50 Rabi cycles. Experimentally, path length
variations, and drifts in the beam intensities and single-photon
detuning �, cause the fringe visibility to fall over 100–200 μs;
the initial visibility reflects the residual Doppler sensitivity at
our modest Rabi frequencies. Inclusion of 1/f phase noise
(green curve) in the simulation yields closer agreement to the
data. The noise level quoted for the modulation electronics is
a factor of 3 below that of the simulation, and we therefore
expect the major contributor to phase noise at these longer
time scales to be path length variation.

C. Composite pulses

As rotary echoes are of limited use beyond revealing
underlying coherence, our focus in this paper is on composite
pulses: sequences of rotations that together perform a desired
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TABLE I. Common composite inversion pulses. The theoretical fidelity F depends upon the atom cloud temperature as shown in Fig. 8, and
is from simulations for typical parameters given in Table II. Bold values indicate best performance at δ = 0, which reflects the leading-order
terms in the fidelity and their coefficients. PP: point-to-point, GR: general rotor.

Composite pulse Type Rotation sequence θφ . . . Leading order Total angle (deg) F(σ+ - σ+) F(π+ - π−)

Rabi π pulse GR 1800 ε2 f 2 180 0.47 0.73
CORPSE GR 6003001804200 ε2 f 4 780 0.61 0.79
KNILL GR 180240180210180300180210180240 ε4 f 4 900 0.64 0.89
BB1 GR 180104.5360313.4180104.51800 ε6 f 2 900 0.56 0.80
90-360-90 PP 900360120900 ε6 f 2 540 0.59 0.82
SCROFULOUS GR 1806018030018060 ε6 f 2 540 0.44 0.72
LEVITT PP 909018009090 ε6 f 2 360 0.70 0.86
90-240-90 GR 9024024033090240 ε2 f 2 420 0.63 0.88
90-225-315 PP 9002251803150 ε2 f 2 630 0.71 0.89
WALTZ PP 9001801802700 ε2 f 2 540 0.77 0.88

manipulation of the state vector on the Bloch sphere with
reduced dephasing from systematic inhomogeneities. Of the
many sequences developed for NMR applications [46], we
consider here just a few of interest for inversion in atom
interferometry and such experiments. The sequences vary in
two key respects.

First, it is common to distinguish between (a) general
rotors, which are designed to apply the correct unitary rotation
to any arbitrary initial state, and (b) point-to-point pulses,
which work correctly only between certain initial and final
states and which for other combinations can be worse than a
simple π pulse. Some composite inversion pulses suitable for
atom interferometry are summarized in Table I.

Second, each pulse sequence may be characterized by its
sensitivity to variations in the interaction strength and tuning,
which instead of the intended rotation propagator U (θ,φ,α)
result in the erroneous mapping V (θ,φ,α). Pulse-length (or
-strength) errors, associated with variations in the strength of
the driving field or interaction with it, appear as a fractional
deviation ε = �θ/θ from the desired rotation angle so that,
for the example of a simple Rabi pulse, for small ε,

V (θ,0,0) = U ((1 + ε)θ,0,0)

= U (θ,0,0)

− ε
θ

2

[
sin

(
θ

2

)
1 + i cos

(
θ

2

)
σx

]
+ O(ε2).

(2)

Off-resonance errors meanwhile correspond to tilts of the
rotation axis due to offsets f = δ/�eff in the driving field
frequency, so that, for the same example and small f ,

V (θ,φ,0) = U (θ,φ, sin−1(f ))

= U (θ,φ,0) + f i sin

(
θ

2

)
σz + O(f 2). (3)

It is common to describe the dependence on ε and f of the
operation fidelity

F = |〈ψ |V †U |ψ〉|2, (4)

which contains only even powers of ε and f . The leading-order
uncorrected terms in the corresponding infidelity I ≡ 1 − F
are given in Table I. For Rabi pulses in our system, pulse-
length errors are caused by intensity inhomogeneities and
mixed transition strengths, and off-resonance errors are due
to Doppler shifts. Detunings such as Doppler shifts are also
accompanied by high-order pulse-length errors, and intensity
variations similarly cause light shifts and thus small off-
resonance errors.

We have compared the general rotor sequences known as
CORPSE [32], BB1 [33], and KNILL [34], and the point-to-point
WALTZ [30] sequence, designed for transfer between the poles
of the Bloch sphere. The sequences last from three to five
times longer than a Rabi π pulse, but all give higher fidelities
and greater detuning tolerances. A Bloch sphere representation
of the WALTZ sequence, as compared with a Rabi π pulse, is

FIG. 4. (Color online) Example Bloch sphere trajectories for a Bloch vector starting from |1〉, with a Raman detuning δ/�eff = 0.75, during
(a) a Rabi π pulse; and (b) the three contiguous rotations constituting a WALTZ sequence.

033608-4



COMPOSITE PULSES FOR INTERFEROMETRY IN A . . . PHYSICAL REVIEW A 90, 033608 (2014)

FIG. 5. (Color online) Measured upper state populations (circles)
after various σ+ − σ+ inversion sequences, as functions of Raman
detuning. Simulations (lines) are for a temperature, laser intensity
and sublevel splitting found by fitting, within known uncertainties of
measured values, to the basic π pulse (a) data.

shown for a nonzero detuning in Fig. 4. The improvement in
fidelity afforded by the WALTZ pulse is visually apparent from
the reduced distance of its resultant state from the south pole,
as compared with that of the Rabi π pulse.

To characterize each inversion sequence experimentally, we
measure the ensemble mean fidelity, equal to the normalized
population |c2|2 of state |2〉. These are shown over a range of
normalized laser detunings δ/�eff for opposite circular Raman
polarizations in Fig. 5, and for orthogonal linear polarizations
in Fig. 6. The displacement of the peak from δ = 0 shows the
light shift in each case.

By truncating each sequence, we also determine the state
population evolution, shown in Fig. 7 for circular beam
polarizations at the optimum Raman detuning. Experimental
fidelities are all presented without correction for the beam
overlap factor S, described in the Appendix.

IV. DISCUSSION

Our experimental results and theoretical simulations
demonstrate general characteristics of coherent manipulations,
as well as the differences between different composite pulse
sequences. In each case, the single-photon light shift due to
the Raman beams is apparent in a detuning of the spectral

FIG. 6. (Color online) Measured upper state populations (circles)
after various π+ − π− inversion sequences, as functions of Raman
detuning. Simulations (lines) are for a temperature, laser intensity
and sublevel splitting found by fitting, within known uncertainties of
measured values, to the basic π pulse (a) data.

peak from the low-intensity resonance frequency, and features
that are resolved in the case of π+ - π− Raman polarizations,
for which the light shift is independent of Zeeman substate,
are blurred into a smooth curve for σ+ - σ+ polarizations.
Temporal light shift variations as the pulse sections begin
and end will distort the composite sequences, but appear to
have little effect on the overall performance. Spatial beam
inhomogeneities, the substate-dependent Raman coupling
strengths, and the Doppler shift distribution should all to an
extent be corrected by the composite pulses.

Our composite pulse sequences vary in the degree to which
they cancel pulse-length and off-resonance errors, with the
CORPSE pulse suppressing only off-resonance effects, the BB1
tolerating only pulse-length errors, and the KNILL pulse cor-
recting the quadratic terms in both. Accordingly, the CORPSE

sequence shows the greatest insensitivity to detuning, while the
BB1 and KNILL pulses show higher peak fidelities. Although
the BB1 is regarded as the most effective for combating pulse-
length errors, we find that pulses that nominally correct for
off-resonance effects only can provide greater enhancements
in the peak fidelity and spectral width overall.

All three general rotors are outperformed in peak fidelity
by the point-to-point WALTZ sequence, which has already been
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FIG. 7. (Color online) Measured upper state populations (circles)
after various σ+ - σ+ inversion sequences, as functions of interpulse
interaction time. Simulations (lines) are again for parameters that
reproduce the results for a basic π (1800) pulse.

used for atom interferometer augmentation pulses [29]. This
pulse is expected to enhance very small errors, but limits their
effect to 5% for |f | � 1.1. In the σ+ - σ+ configuration, we
observe that the WALTZ pulse nearly halves the infidelity I
on which the interferometer contrast depends, from 0.58 for
the basic π pulse to 0.33. In the π+ - π− configuration, the
improvement is from I = 0.35 to I = 0.24, and the fidelity
is maintained as predicted for detunings |δL| � �eff ; beyond
this, it falls more gently so that, at |δL| ≈ 3�eff , it is over five
times that for a π pulse.

We note that, as the pulse durations in our experiments were
chosen by optimizing the π pulse fidelity, slight improvements
might be possible for the other sequences, both because it is
the atomic ensemble average that matters and because the
bandwidths of our modulators cause small distortions around
the pulse transients.

The close agreement of our experimental results and
theoretical simulations demonstrates both the validity of our
simple model of the velocity and Zeeman state distributions
and the durable underlying coherence of individual atomic
states. In each case, the simulation parameters are based on the
measured laser intensities and detunings, which are adjusted
within known uncertainties to match the results for a simple
π pulse under the same experimental conditions; the deduced
values are listed in Table II. As the measured efficiencies
depend on experimental conditions that vary between data sets,
we have simulated the performance of the π pulse and KNILL

and WALTZ sequences under consistent conditions, for a range
of velocity distributions and for two different Zeeman substate
distributions. Figure 8 demonstrates the expected decrease in
fidelity with increasing atom cloud temperature and with the
population of multiple Zeeman levels. For low temperatures
(σv � 5vR), the spectral width of the Rabi π pulse at �eff ∼
2π × 350 kHz exceeds the Doppler-broadened linewidth, and
the peak fidelity is determined by the variation in Raman
coupling strength between different Zeeman substates; the
best fidelity is hence obtained with the superior pulse-length
error performance of the KNILL sequence. For warmer samples,
Doppler off-resonance errors dominate, and the WALTZ pulse
is better. For atoms that are spin-polarized into a single
Zeeman level, the performance of all pulses is improved,
and the preference for the WALTZ pulse extends to slightly
lower temperatures. Table I summarizes these results for
conditions that are typical for our experiments, and also shows
the theoretical performance of some other popular composite
pulse sequences.

V. CONCLUSION

Our results show that the principal errors in the co-
herent manipulation of cold atoms are due to systematic
inhomogeneities in the laser intensity, atomic velocity, and

TABLE II. Parameters used in theoretical simulations. In each case, the hyperfine state mF levels are assumed to be equally populated, and
the Raman beam intensities—which may differ because of different beam widths—are assumed to be spatially and temporally invariant. The
velocity distribution is taken to have two Gaussian components with widths σ1,2, given in units of the single-photon recoil velocity vrec, and
relative amplitudes a1,2; a Gaussian velocity distribution width of σv corresponds to a temperature of T = mσ 2

v /kB ≡ 1.48(σv/vrec)2 μK. (†) Also
represents π+ - π− as the B field here is set to compensate for Zeeman-like light shift. (‡) For the single substate mF = 0, �eff = 2π × 316 kHz,
tπ = 1.43 μs.

I1 I2 � Bz σ1 σ2 �eff tπ
Polarization (kW m−2) (kW m−2) (2π×GHz) (mG) (units of vR) (units of vR) a1/a2 S (2π×kHz) (μs)

Table I σ+ - σ+ 12.1 12.1 12.3 5 22.5 4 250 2
Figure 2 σ+ - σ+ 3 4.6 10 −11 1.8 7.5 4 4.5 110
Figure 3 σ+ - σ+ 12 17 15 −101 3 10 3 0.95 200 2.5
Figure 5 σ+ - σ+ 14 21 9.0 −11 2.5 9 2 0.9 357 1.4
Figure 6 π+ - π− 14 21 8.0 −11 2.5 9 2 0.9 417 1.2
Figure 7 σ+ - σ+ 14 21 8.5 −11 2.5 9 2 0.9 385 1.3

Figure 8 σ+ - σ+ † 14 21 9 −261 various 0 1 350‡ 1.58‡
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FIG. 8. (Color online) Predicted fidelity achievable using WALTZ

(blue/dark-gray) and KNILL (green/light-gray) composite pulses,
compared with a simple π -pulse (red/mid-gray), for varying velocity
distribution widths σv in units of the two-photon recoil velocity
vR . Dashed lines show predicted behaviour for spin-polarised atoms
populating only the mF = 0 state, while solid lines are for an even
distribution across all states mF = −2 . . . + 2.

Zeeman substate, and may hence be significantly reduced
by composite pulse techniques. Near the recoil limit, we
predict that instead of the the maximum π -pulse fidelity of
0.96 it should be possible to achieve fidelities in excess of
0.99, allowing many more augmentation pulses to impart a
greater separation between the interferometer paths and hence
an elevated interferometric sensitivity without losing atoms
through spin squeezing. The greater tolerance of Doppler
shifts similarly allows interferometry to be performed without
further loss through velocity selection.

Atom interferometers require not only augmentation
π pulses but also beam-splitter–recombiner π/2 pulses (900),
and for these it is likely that quite different composite
pulse sequences will be required to minimize the effects of
experimental variations on the composition and phase of the
quantum superposition; the solution depends on the balance of
different sources of error, and the relative importance of their
different effects on the final states. Cold atom interferometers
are likely to differ in both respects from the NMR systems
for which most established composite pulse sequences were
developed. In our system, pulse-length and off-resonance
errors are not only conflated; they are to some extent correlated,
for the light shift is responsible for both.

The best solutions need not be those which optimize the
fidelities of the individual interferometer operations, for it is
likely that errors after the first beam splitter, for example,
could to some extent be corrected by the recombiner. Indeed,
the WALTZ pulse was developed for decoupling sequences
where long chains of π pulses, rather than single isolated
pulses, are the norm; although, for an equal superposition
initial state |ψ〉 = 1√

2
(|g〉 + eiφ|e〉) in the presence of off-

resonance errors, a single WALTZ inversion is worse than a
basic π pulse, a sequence of two WALTZ pulses gives an

efficient 2π rotation, and when two pairs of WALTZ pulses
were applied as in the large-area interferometer in [29], readout
contrast was increased. The development of composite pulse
sequences for atom interferometry should therefore consider
the performance of the interferometer as a whole.
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APPENDIX A: EXPERIMENTAL DETAILS

85Rb atoms are initially trapped and cooled to ∼250 μK
in a standard 3D magneto-optical trap (MOT) to give about
2 × 107 atoms in a cloud about 500 μm in diameter. The
MOT magnetic fields are extinguished, the beam intensities
ramped down, and the cloud left to thermalize in the 3D
molasses for 6 ms, after which the temperature has fallen to
∼50 μK. The velocity distribution exhibits a double-Gaussian
shape, as shown in Fig. 2, because atoms at the center of the
molasses undergo more sub-Doppler cooling than those at the
edges [48]. The |5S1/2,F = 2〉 → |5P3/2,F = 3〉 repumping
beam is then extinguished, and the atoms are optically pumped
for 300 μs into the |5S1/2,F = 2〉 ground hyperfine state by
the cooling laser, which is detuned to the red of the |5S1/2,F =
3〉 → |5P3/2,F = 4〉 transition. Three mutually orthogonal
pairs of shim coils cancel the residual magnetic field at the
cloud position, and are calibrated by minimizing the spectral
width of a Zeeman-split, velocity-insensitive (co-propagating)
Raman transition. From the spectral purity of the measured
velocity distribution, we deduce the residual magnetic field
to be less than 10 mG, equivalent to a Zeeman splitting of
∼5 kHz × mF , and hence that the Zeeman sublevels for each
hyperfine state are degenerate to within a fraction of the typical
Rabi frequency �eff > 2π × 200 kHz. After preparation, we
apply the Raman pulses to couple the states |5S1/2,F = 2〉 and
|5S1/2,F = 3〉, and then measure the resultant |5S1/2,F = 3〉
state population by detecting fluorescence when pumped by
the cooling laser.

The apparatus used to generate our Raman pulses is
shown schematically in Fig. 9. The beams are generated by
spatially and spectrally splitting the continuous-wave beam
from a 780 nm external cavity diode laser, red-detuned from
single-photon resonance by � ≈ 2π × 10 GHz. The beam is
spatially divided by a 310 MHz acousto-optical modulator
(AOM), and the remainder of the microwave frequency shift
is generated by passing the undeflected beam from the AOM
through a 2.726 GHz electro-optical modulator (EOM). We
modulate the EOM phase and frequency using an in-phase
and quadrature-phase (IQ) modulator, fed from a pair of
arbitrary wave form generators. The carrier wave at the output
of the EOM is removed using a polarizing beam-splitter
cube [49], and temperature-dependent birefringence within
the EOM is countered by active feedback to a liquid crystal
phase retarder [50]. The remaining off-resonant sideband is
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FIG. 9. (Color online) Schematic of the experimental setup of the
Raman beams: ECDL, external-cavity diode laser; PBSC, polarizing
beam-splitter cube; TA, tapered amplifier; OSA, optical spectrum
analyzer; BSh, beam shaper and focusing lens. The annotation
bubbles show sketches of the beam spectrum at each preparation
stage. For clarity, the injection-locked preamplifier following the
EOM is omitted.

removed using a stabilized fiber-optic Mach-Zehnder interfer-
ometer [51].

Following preamplification of the EOM sideband by
injection-locking a c.w. diode laser, the two spatially separate,
spectrally pure Raman beams are then individually amplified
by tapered laser diodes, recombined with orthogonal polariza-
tions, and passed through an AOM, whose first-order output
forms the Raman pulse beam. The AOM rise and fall times
alter the effective pulse timing but are not included in the
sequence design; proper compensation could further improve
the observed fidelity.

Each beam is passed through a Topag GTH-4-2.2 refractive
beam shaper and 750 mm focal length lens to produce an
approximately square, uniform beam whose intensity varies
by only 13% across the extent of the MOT cloud. The
beams measure ∼2 mm square and each has an optical power
of 50 mW, corresponding to an intensity of ∼1.3 W cm−2.
Compared with the large-waist Gaussian beams required for
the same spatial homogeneity, this provides a significantly
higher intensity and as a result our system exhibits two-photon
Rabi frequencies of �eff ≈ 2π × 250 kHz. Using a shorter
focal-length lens in the beam path to produce a smaller top
hat, we have observed a higher Rabi frequency of �eff ≈
2π × 500 kHz, but are then limited by the number of atoms
that remain within the beam cross section. Although the phase
profile of the top-hat beam is nonuniform [52], we calculate
that an individual atom will not traverse a significant phase
gradient during a few-μs pulse sequence.

Because our Raman beams illuminate a smaller region than
the cooling and repump beams used to determine the final-state
population, a fraction of the expanding atom cloud contributes
to the normalization signal without experiencing the Raman
pulse sequence. We have characterized the time dependence
of this effect, and scale our simulated upper state populations
in Figs. 5–7 by a factor S as summarized in Table II.

In order to provide a good comparison in the presence of
drift (applicable in Figs. 3–5), we take data on the composite
pulses immediately after taking data on its corresponding basic

pulses. Experiment shots took 0.4 s and were repeated 16 times
and averaged to improve the signal-to-noise ratio. When taking
a spectral scan (Fig. 5) we ran through different values of
the detuning in a pseudorandom sequence to minimize the
effects of drift. Data in the temporal scans (Figs. 3 and 7) were
not sampled at pseudorandom values of t , and therefore the
fringe contrast in these plots is subject to drifts in �eff from
t = 0 → tmax.

APPENDIX B: THEORETICAL MODEL

We drive two-photon stimulated Raman transitions between
the two hyperfine ground states in 85Rb, as shown in Fig. 1.
When the two Raman beams with angular frequencies ωL1,L2

and wave vectors k1,2 travel in opposite directions (k1 ≈
−k2), the Raman interaction is velocity-sensitive and each
transition is accompanied by a two-photon recoil of the atom
keff = k1,2 − k2,1 ≈ ±2k1,2 as a photon is scattered from one
Raman beam to the other. The internal state of the atom is
therefore mapped to its quantized external momentum state. If
an atom is prepared in the lower hyperfine state |5S1/2,F = 2〉,
which we label |1〉, and the Raman transition couples this,
via an intermediate virtual state |3〉, to the upper hyperfine
state |5S1/2,F = 3〉, labeled |2〉, then the momentum-inclusive
basis in which we work is |1,p〉, |2,p + �keff〉. For clarity, we
henceforth omit the momenta and leave these implicit in our
notation.

The Hamiltonian for the Raman system is [53]

Ĥ = p̂2

2m
+ �ω1|1〉〈1| + �ω2|2〉〈2| + �ω3|3〉〈3| − d̂ · E,

(B1)

where p̂ is the momentum operator and differs in this equation
from the ground-state momentum p principally through the
introduction of the small Doppler shift to the resonance
frequency due to the impulse imparted by the transition. The
initial and final electronic states are taken to have energies �ω1

and �ω2, d̂ is the Raman electric dipole operator, acting via all
intermediate states |i〉, and the electric field of the two Raman
beams counter-propagating along the z axis is given by

E = E1e
(k1·z+ωL1t+φ1) + E2e

(k2·z+ωL2t+φ2), (B2)

where on resonance ωL1 = ω3 − ω1 and ωL2 = ω3 − ω2, E1,2
are the Raman beam amplitudes, and we define φ = φ1 − φ2

as the effective phase of the Raman field. For the analytical
solutions to the time-dependent Schrödinger equation for this
system in the interaction picture, we refer the reader to [53].

The effective Rabi frequency of the Raman transition
(�′

r in [53]) depends on (a) the respective Clebsch-Gordan
coefficients of the Raman route whose relative amplitudes
are shown in Fig. 1, (b) the intensity of the driving field,
which in our simulations is taken to be temporally “square”
and (except in Fig. 3) spatially homogeneous, and (c) the
detuning of the driving field from the atomic resonance, which
is Doppler-shifted by the atom’s motion. It follows that for
a Doppler-broadened ensemble of atoms distributed across
degenerate sublevels, we expect a distribution of �′

r values
and therefore a dephasing of atomic states during a Raman
pulse. Consequently, the π pulse efficiency will be unavoidably
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limited to much less than unity in the absence of effective error
correction.

To simulate the system we numerically calculate the
hyperfine state amplitudes c|1,p〉(t) and c|2,p+�keff 〉(t) for
a period t of interaction with the Raman beams, and
integrate over all Raman routes and velocity classes.
The atoms are taken initially to be evenly distributed
across the Zeeman mF sublevels of |5S1/2,F = 2〉, and
opposite-circularly polarized Raman beams are considered
to drive σ+ dipole-allowed transitions via the Raman

routes shown in Fig. 1 where, regardless of the quantiza-
tion axis, conservation of angular momentum requires that
�mF = 0.

The primary free parameters in our simulations are the
velocity distribution, which we model as having two Gaussian
components similar to those fitted to the measured distribution
in Fig. 2, the sampling factor S, and the laser intensity I . To ac-
count for experimental variations, we allow small adjustments
from measured values to give a closer fit to the data; the values
used for our various simulations are listed in Table II.
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[36] M. Weitz and T. W. Hänsch, Europhys. Lett. 49, 302 (2000).
[37] T. Freegarde and D. Segal, Phys. Rev. Lett. 91, 037904

(2003).
[38] M. Kasevich and S. Chu, Appl. Phys. B 54, 321 (1992).
[39] S. Riedl, G. Hoth, E. Donley, and J. Kitching, Poster, 2013.
[40] D. S. Weiss, B. C. Young, and S. Chu, Appl. Phys. B 59, 217

(1994).
[41] M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
[42] M. Weitz, B. C. Young, and S. Chu, Phys. Rev. Lett. 73, 2563

(1994).
[43] R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, J. Appl. Phys.

28, 49 (1957).
[44] J. Rooney, Environment and Planning B 4, 185 (1977).
[45] D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, J.

Opt. Soc. Am. B 28, 416 (2011).
[46] J. T. Merrill and K. R. Brown, Adv. Chem. Phys. 154, 241

(2014).
[47] J. R. Johansson, P. D. Nation, and F. Nori, Comp. Phys. Comm.

184, 1234 (2013).
[48] C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie,

C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard,
Phys. Rev. A 52, 1423 (1995).

[49] N. Cooper, J. Bateman, A. Dunning, and T. Freegarde, J. Opt.
Soc. Am. B 29, 646 (2012).

[50] J. E. Bateman, R. L. D. Murray, M. Himsworth, H. Ohadi,
A. Xuereb, and T. Freegarde, J. Opt. Soc. Am. B 27, 1530
(2010).

033608-9

http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1088/0026-1394/42/3/S08
http://dx.doi.org/10.1088/0026-1394/42/3/S08
http://dx.doi.org/10.1088/0026-1394/42/3/S08
http://dx.doi.org/10.1088/0026-1394/42/3/S08
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1103/PhysRevA.82.013622
http://dx.doi.org/10.1103/PhysRevA.82.013622
http://dx.doi.org/10.1103/PhysRevA.82.013622
http://dx.doi.org/10.1103/PhysRevA.82.013622
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevA.83.053420
http://dx.doi.org/10.1103/PhysRevA.83.053420
http://dx.doi.org/10.1103/PhysRevA.83.053420
http://dx.doi.org/10.1103/PhysRevA.83.053420
http://dx.doi.org/10.1103/PhysRevA.32.3435
http://dx.doi.org/10.1103/PhysRevA.32.3435
http://dx.doi.org/10.1103/PhysRevA.32.3435
http://dx.doi.org/10.1103/PhysRevA.32.3435
http://dx.doi.org/10.1103/PhysRevA.76.013416
http://dx.doi.org/10.1103/PhysRevA.76.013416
http://dx.doi.org/10.1103/PhysRevA.76.013416
http://dx.doi.org/10.1103/PhysRevA.76.013416
http://dx.doi.org/10.1103/PhysRevA.86.011606
http://dx.doi.org/10.1103/PhysRevA.86.011606
http://dx.doi.org/10.1103/PhysRevA.86.011606
http://dx.doi.org/10.1103/PhysRevA.86.011606
http://dx.doi.org/10.1103/PhysRevA.86.023803
http://dx.doi.org/10.1103/PhysRevA.86.023803
http://dx.doi.org/10.1103/PhysRevA.86.023803
http://dx.doi.org/10.1103/PhysRevA.86.023803
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1103/PhysRevA.67.042308
http://dx.doi.org/10.1103/PhysRevA.67.042308
http://dx.doi.org/10.1103/PhysRevA.67.042308
http://dx.doi.org/10.1103/PhysRevA.67.042308
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/PhysRevLett.93.157005
http://dx.doi.org/10.1103/PhysRevLett.93.157005
http://dx.doi.org/10.1103/PhysRevLett.93.157005
http://dx.doi.org/10.1103/PhysRevLett.93.157005
http://dx.doi.org/10.1038/ncomms2375
http://dx.doi.org/10.1038/ncomms2375
http://dx.doi.org/10.1038/ncomms2375
http://dx.doi.org/10.1038/ncomms2375
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1088/1367-2630/9/7/211
http://dx.doi.org/10.1088/1367-2630/9/7/211
http://dx.doi.org/10.1088/1367-2630/9/7/211
http://dx.doi.org/10.1088/1367-2630/9/7/211
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevLett.109.213002
http://dx.doi.org/10.1103/PhysRevLett.109.213002
http://dx.doi.org/10.1103/PhysRevLett.109.213002
http://dx.doi.org/10.1103/PhysRevLett.109.213002
http://dx.doi.org/10.1038/nature05680
http://dx.doi.org/10.1038/nature05680
http://dx.doi.org/10.1038/nature05680
http://dx.doi.org/10.1038/nature05680
http://dx.doi.org/10.1103/PhysRevA.79.022316
http://dx.doi.org/10.1103/PhysRevA.79.022316
http://dx.doi.org/10.1103/PhysRevA.79.022316
http://dx.doi.org/10.1103/PhysRevA.79.022316
http://dx.doi.org/10.1038/nphys1330
http://dx.doi.org/10.1038/nphys1330
http://dx.doi.org/10.1038/nphys1330
http://dx.doi.org/10.1038/nphys1330
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1364/AO.52.008528
http://dx.doi.org/10.1364/AO.52.008528
http://dx.doi.org/10.1364/AO.52.008528
http://dx.doi.org/10.1364/AO.52.008528
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1364/JOSAB.30.000922
http://dx.doi.org/10.1364/JOSAB.30.000922
http://dx.doi.org/10.1364/JOSAB.30.000922
http://dx.doi.org/10.1364/JOSAB.30.000922
http://dx.doi.org/10.1016/0022-2364(83)90207-X
http://dx.doi.org/10.1016/0022-2364(83)90207-X
http://dx.doi.org/10.1016/0022-2364(83)90207-X
http://dx.doi.org/10.1016/0022-2364(83)90207-X
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1088/1367-2630/2/1/006
http://dx.doi.org/10.1088/1367-2630/2/1/006
http://dx.doi.org/10.1088/1367-2630/2/1/006
http://dx.doi.org/10.1088/1367-2630/2/1/006
http://dx.doi.org/10.1006/jmra.1994.1159
http://dx.doi.org/10.1006/jmra.1994.1159
http://dx.doi.org/10.1006/jmra.1994.1159
http://dx.doi.org/10.1006/jmra.1994.1159
http://dx.doi.org/10.1103/PhysRevLett.105.200402
http://dx.doi.org/10.1103/PhysRevLett.105.200402
http://dx.doi.org/10.1103/PhysRevLett.105.200402
http://dx.doi.org/10.1103/PhysRevLett.105.200402
http://dx.doi.org/10.1103/PhysRevA.87.052317
http://dx.doi.org/10.1103/PhysRevA.87.052317
http://dx.doi.org/10.1103/PhysRevA.87.052317
http://dx.doi.org/10.1103/PhysRevA.87.052317
http://dx.doi.org/10.1209/epl/i2000-00149-4
http://dx.doi.org/10.1209/epl/i2000-00149-4
http://dx.doi.org/10.1209/epl/i2000-00149-4
http://dx.doi.org/10.1209/epl/i2000-00149-4
http://dx.doi.org/10.1103/PhysRevLett.91.037904
http://dx.doi.org/10.1103/PhysRevLett.91.037904
http://dx.doi.org/10.1103/PhysRevLett.91.037904
http://dx.doi.org/10.1103/PhysRevLett.91.037904
http://dx.doi.org/10.1007/BF00325375
http://dx.doi.org/10.1007/BF00325375
http://dx.doi.org/10.1007/BF00325375
http://dx.doi.org/10.1007/BF00325375
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.73.2563
http://dx.doi.org/10.1103/PhysRevLett.73.2563
http://dx.doi.org/10.1103/PhysRevLett.73.2563
http://dx.doi.org/10.1103/PhysRevLett.73.2563
http://dx.doi.org/10.1063/1.1722572
http://dx.doi.org/10.1063/1.1722572
http://dx.doi.org/10.1063/1.1722572
http://dx.doi.org/10.1063/1.1722572
http://dx.doi.org/10.1068/b040185
http://dx.doi.org/10.1068/b040185
http://dx.doi.org/10.1068/b040185
http://dx.doi.org/10.1068/b040185
http://dx.doi.org/10.1364/JOSAB.28.000416
http://dx.doi.org/10.1364/JOSAB.28.000416
http://dx.doi.org/10.1364/JOSAB.28.000416
http://dx.doi.org/10.1364/JOSAB.28.000416
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1103/PhysRevA.52.1423
http://dx.doi.org/10.1103/PhysRevA.52.1423
http://dx.doi.org/10.1103/PhysRevA.52.1423
http://dx.doi.org/10.1103/PhysRevA.52.1423
http://dx.doi.org/10.1364/JOSAB.29.000646
http://dx.doi.org/10.1364/JOSAB.29.000646
http://dx.doi.org/10.1364/JOSAB.29.000646
http://dx.doi.org/10.1364/JOSAB.29.000646
http://dx.doi.org/10.1364/JOSAB.27.001530
http://dx.doi.org/10.1364/JOSAB.27.001530
http://dx.doi.org/10.1364/JOSAB.27.001530
http://dx.doi.org/10.1364/JOSAB.27.001530


ALEXANDER DUNNING et al. PHYSICAL REVIEW A 90, 033608 (2014)

[51] N. Cooper, J. Woods, J. Bateman, A. Dunning, and T. Freegarde,
Appl. Optics 52, 5713 (2013).

[52] W. Boutu, T. Auguste, O. Boyko, I. Sola, Ph. Balcou, L. Binazon,
O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and
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