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Algorithmic Cooling in a Momentum State Quantum Computer
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We describe a quantum computer based upon the coherent manipulation of two-level atoms between
discrete one-dimensional momentum states. Combinations of short laser pulses with kinetic energy
dependent free phase evolution can perform the logical invert, exchange, controlled-NOT, and
Hadamard operations on any qubits in the binary representation of the momentum state, as well as
conditional phase inversion. These allow a binary right rotation, which halves the momentum
distribution in a single coherent process. Fields for the coherent control of atomic momenta may
thus be designed as quantum algorithms.
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FIG. 1. (a) Fractional � pulses tuned to the two-level atom
couple adjacent momentum states, which (b) we label in units
of �hk. This number, written in binary, gives the qubits of the
momentum state quantum computer. (c) Two �=2 pulses act as
the beam splitters of an atomic interferometer; the relative
phase between the paths determines whether the pulses add
versely propagating laser beams, as shown in Fig. 1. We or subtract, and hence whether the electronic state is inverted.
Proposed schemes for quantum computation [1] have
tended to focus on quantum analogs of classical binary
computing elements. The nuclear spins of a molecule, or
of an ensemble of trapped ions, thus mimic the bits of a
conventional computer. We address here a less obvious
system, in which information is represented by the mo-
mentum of a single atom or molecule, which is manipu-
lated using laser pulses in a one-dimensional geometry
that restricts each species to a ladder of equally spaced
momentum states. Although any laser pulse can change
the momentum, through photon absorption or stimulated
emission, by only a single photon impulse, we find
that sequences of pulses, interspersed with periods of
momentum-dependent phase evolution, allow a full suite
of quantum computational operations on the qubits com-
prising the binary representation of the momentum state.

The ‘‘size’’ of the momentum state quantum computer
grows in proportion to the number of quantum states
included, where conventional candidates instead scale
with the number of qubits representing those states. The
number of laser pulses needed to perform each logical
operation increases similarly so, although the overall
duration proves to be less drastically affected, momentum
state systems hold limited promise for real computing.
Nonetheless, the scheme outlined here is based upon
simple and readily available elements, albeit in complex
combinations, and could thus complement NMR systems
[2,3] as a testbed for experimental studies.

It is in the design of complex fields for coherent control
that we see greater potential, for if momentum-changing
operations can form the basis of a quantum computer then
the pulse sequences for optical manipulation may be
optimized as quantum algorithms. In this respect, the
momentum state quantum computer is an enthusiastic
extension of schemes for interferometric cooling [4] and
the coherent amplification of laser cooling [5].

Our scheme is based upon the motion in one dimension
(henceforth taken to be vertical) of a sample of two-level
atoms, such as an atomic beam interacting with trans-
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refer to four coherent operations:

W���;�� a short upward laser pulse;

W���;�� a short downward laser pulse;

F�!t� free evolution �electronic energy�;

G�t=
� free evolution �kinetic energy�;

where 
 � 2m=� �hk2�. The short (and therefore spectrally
broad) laser pulses couple the upper and lower atomic
levels, between which population is transferred through
Rabi cycling for the duration of the pulse. We convention-
ally describe the overall effect of the pulse through the
phase 2� of the Rabi cycle incurred, the population being
inverted when 2� � � (the ‘‘� pulse’’), and restored
when 2� � 2�. Other fractions of a � pulse convert an
eigenstate into a superposition. The phases � are deter-
mined by the optical phases of the laser pulses. The free
evolution operations F�!t� and G�t=
� correspond simply
to the components of the time-dependent wave function
phase exp��iEt= �h� that correspond to the electronic
energy and vertical momentum component, respectively.
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FIG. 2. Bloch-vector representation of the first stage [Eq. (2)]
of the right rotation. The first pulse rotates the four ground
states into the horizontal plane; free evolution distributes these
around the vertical axis according to their momenta; the
second pulse then returns two to eigenstates, leaving the others
as superpositions. Aside from phase corrections, the full right
rotation takes 18 �=2 pulses and 26 � pulses.
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Weitz and Hänsch [4] have shown how the electronic and
kinetic energy contributions to the free phase evolution
may be separated by inserting pairs of� pulses that invert
the atomic population, as we discuss later.

In this one-dimensional geometry, the atom is con-
strained to a ladder of momentum states, Fig. 1(b), that
are spaced at intervals of the photon momentum �hk �
�h!=c (! being the frequency of the resonant transition)
and alternate between the ground and excited electronic
levels g and e. We label these states according to their
momentum components, in units of the photon impulse
�hk, and initially assume that these momenta take integer
values. This assumption will be relaxed when we later
consider the consequences for atomic manipulation.

We now express the momenta in binary, using the
notation Qn . . .Q2Q1Q0, with the least significant bit on
the right. This is the crucial step in our analysis; yet, apart
from the correspondence of Q0 to the electronic state,
binary representation seems at first rather unpromising,
for computational notation usually helps only when the
bits themselves can be manipulated. While the momen-
tum-changing laser pulses here move population by at
most one state at a time, however, appropriate combina-
tions prove to offer exactly such bitwise manipulation.

The key, as in the interferometric cooling scheme of
Ref. [4], is the dependence of the phase of free evolution
upon the momentum. For two levels p� 	p=2 and
p� 	p=2 (in units of �hk) and electronic energy differ-
ence E21 � �h!, the relative phase  evolves according to

 �
E21t

�h
�

� �hk�2t
2m �h

��
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	p
2

�
2
�

�
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	p
2

�
2
�

�!t�
�hk2t
m
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Any pair of momentum states thus incurs a relative phase
that evolves according to their average momentum p.
Cancellation of the electronic contribution to the phase,
by inserting � pulse pairs so that the states spend equal
times in the ground and excited levels [4], merely changes
the average 	p and hence the rate at which this proceeds.

We illustrate the capacity for bitwise manipulation with
the example of a three qubit right rotation,

fQ2; Q1; Q0g ! fQ0; Q2; Q1g:

In our largely diagrammatic description, which has its
origins in Fig. 1(c), pulses or complete pulse sequences
coupling adjacent levels are indicated by when they
produce a superposition (e.g., a �=2 pulse), when they
cause inversion (e.g., a � pulse), and when 2� � 0; 2�
and so on. For periods of free evolution, we simply
indicate the relative phases introduced between coupled
states.

First consider a pair of upward-traveling �=2 pulses,
separated by a period of free evolution that introduces
between coupled states a relative phase adjusted to give in
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each case an integer power of exp��i�=2�. This forms a
simple interferometer which, depending upon the origi-
nal state momentum, can invert population, return it to its
original state, or leave initially pure states coupled [see
Fig. 1(c)]. The sequence repeats every 8 �hk.

This and subsequent operations may be visualized, as
in Fig. 2, as rotations of Bloch vectors representing the
coupled states—a picture also suitable for NMR com-
puters [6,7]. Eigenstates are vertically up (jgi) or down
(jei), and are coupled by rotation about a horizontal axis,
whose direction depends upon the optical phase. Free
evolution corresponds to rotation about the vertical axis.

Two such sequences may now be combined with a
further momentum-dependent phase between them to
form a second interferometer for the states left in super-
positions. The ladder of phases is offset by an F�!t�
operation, or through appropriate phasing of the later
laser pulses. The result is a conditional state exchange:

Precisely which pair of adjacent states is exchanged by
this operation depends upon the directions and relative
phases of the �=2 pulses. As the penultimate step, we
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TABLE I. Basic operations of the momentum state quantum computer. The pulse sequences run from right to left, and some
uncorrected phases remain in those marked with an asterisk. For the operation G, p0 is taken to be zero (mod 8).

Level Name Description Sequence

Basic G�t=
� W���=2; 0� � FG�t=4
� �W���=2; 0� � FG�t=4
��
W���=2; 0� � FG�t=4
� �W���=2; 0� � FG�t=4
�

1 qubit NOT(0) Q0 ! Q0 F��2� �W��
�
2 ; 0� � F�

�
2�

CP1(0) If state � 0, invert phase F��� �W���; 0�

HAD(0) Walsh-Hadamard on Q0 W��
�
4 ;

�
2� � F��� �W���; 0�

2 qubit EX(1,0) fQ1; Q0g ! fQ0; Q1g F��2� �W��
�
4 ; �� �G�

�
4� �W��

�
4 ;

�
4� � F�

5�
4 �

CNOT(1,0) fQ1; Q0g ! fQ1; Q1 �Q0g F��2� �W��
�
4 ; �� �G�

�
4� �W��

�
4 ;

�
4� � F�

5�
4 �

CNOT�1; 0� fQ1; Q0g ! fQ1; Q1 �Q0g W���; 0� � F�
3�
2 � �W��

�
4 ; 0� �G�

�
4� �W��

�
4 ;

�
4� � F�

5�
4 �

CP2(0) If state � 0, invert phase F�3�4 � �G�
�
4� �W���; 0�

HAD(1,0) Walsh-Hadamard on Q1; Q0 EX�1; 0� � HAD�0� � EX�1; 0� � HAD�0�

3 qubit SW3�2; 3�
 Swap states 2, 3 W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

9�
8 � � F�

5�
4 � �G�

�
8� �

W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

9�
8 � � F�

13�
8 � �G��4�

SW3�3; 4�
 Swap states 3, 4 F��� �W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

5�
8 � � F�

5�
4 � �G�

�
8��

W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

5�
8 � � F�

13�
8 � �G��4�

SW3�4; 5�
 Swap states 4, 5 W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

5�
8 � � F�

5�
4 � �G�

�
8� �

W��
�
4 ; 0� �G�

�
8� �W��

�
4 ;

5�
8 � � F�

�
8� �G�

�
4�

EX(2,1) fQ2; Q1g ! fQ1; Q2g W���; 0� � CNOT�1; 0� � EX�1;0� �G�3�8 � � F�
13�

8 � � EX�1;0� � CNOT�1; 0��

SW3�3; 4� � NOT�0� � F��� � NOT�0� � SW3�4;5��

NOT�0� � F��� � NOT�0� � SW3�2;3� � SW3�3;4� �G�3�8 � � F�
5�
8 �

RR3 fQ2; Q1; Q0g ! fQ0; Q2; Q1g EX�2; 1� � EX�1; 0�
CP3(0) If state � 0, invert phase NOT�0� � RL3 � NOT�0� � RL3 � F�5�8 � �G�

3�
8 � � RR3 � SW3�4; 5� � F�3�2 ��

SW3�4; 5� � F��2� � NOT�0� � RR3 � NOT�0� �W���; 0�
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FIG. 3. Cooling via the right-rotation operation, shown here
applied to the lowest three qubits. The initial distribution across
ground states f0; 2; 4; 6g is transferred (bold arrows) to the
lowest momentum states f0; 1; 2; 3g; subsequent spontaneous
emission leaves population in states f0; 2; 4g. The width of the
momentum distribution may thus be reduced by a factor of
nearly 2 in a single coherent step.
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construct the two-qubit exchange operation EX(2,1):

The right rotation RR3 is completed by combining this
sequence with the much simpler exchange EX(1,0) of
qubits Q1 and Q0. This is given in Table I together with
a range of other operations on the first three qubits from
which, in conjunction with the one-bit operations
W���;�� and F�!t�, a complete set may be formed [8].

When only the ground electronic level is occupied
(Q0 � 0), the right rotation is indistinguishable from a
divide-by-two operation [e.g., 100�� 4� ! 010�� 2�] and
provides a cooling mechanism. As shown in Fig. 3, the
four ground states are coherently mapped onto the four
lowest momentum states, two of which subsequently
undergo spontaneous emission, leaving only states 0, 2,
and 4 populated. The coherent process, which pumps heat
037904-3
from kinetic to electronic energy, may then be repeated,
further narrowing the momentum distribution.

We now relax our earlier assumption of integer-valued
momenta and find that the effect, while imperfect for
noninteger values, remains. The simulated evolution of
an initially flat momentum distribution is shown in Fig. 4.

For our simulations, we have used matrix representa-
tions of the pulse and evolution operations. Although the
matrices are in principle infinite, all nonzero terms clus-
ter around the leading diagonal and any element mi;j
differs from the diagonally displaced term mi�2n;j�2n
037904-3
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FIG. 4. Simulated evolution of the momentum distribution,
shown after one, two, four, and eight cycles of the three-qubit
cooling algorithm. The initial probability density is unity.
While the process is ideal only for even, integral momenta,
significant cooling remains apparent and, after a few cycles,
the distribution is less than a single photon impulse wide.
Spontaneous emission scrambles the exact momenta. There is
little migration between adjacent, 8 �hk-wide, capture ranges.
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only through its momentum dependence, so we summa-
rize the matrices as 4 � 4 elements, derived from the
equations of Friedberg and Hartmann [9]. Those used in
practice must be expanded to cover the interactions and
the momentum range that we wish to describe. The fol-
lowing matrices act on the states f2; 1; 0;�1g.

For upward and downward traveling fractional �
pulses corresponding to Bloch vector rotation through
the ‘‘Rabi angle’’ 2� and the optical phase �, we have

W���;�� �

0
BBBB@

cos� 0 0 0

0 cos� iei� sin� 0

0 ie�i� sin� cos� 0

0 0 0 cos�

1
CCCCA

and

W���;���

0
BBBB@

cos� ie�i� sin� 0 0

iei� sin� cos� 0 0

0 0 cos� ie�i� sin�

0 0 iei� sin� cos�

1
CCCCA:

The matrices for free evolution according to the elec-
tronic and kinetic energies are, respectively,

F�!t� �

0
BBBB@

1 0 0 0

0 e�i!t 0 0

0 0 1 0

0 0 0 e�i!t

1
CCCCA

and
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�
�

0
BBBB@

e�i�p0�2�2t=
 0 0 0

0 e�i�p0�1�2t=
 0 0

0 0 e�ip
2
0t=
 0

0 0 0 e�i�p0�1�2t=


1
CCCCA;

where 
 � 2m=� �hk2�.
No attempt has been made to optimize the sequences

given: many phase corrections serve only to show the
exact equivalence to a quantum computer, and reductions
in the complexity, duration or momentum sensitivity of
each operation should be possible. Neither have we exam-
ined superpositions involving more than two states [10] or
interactions at more than one wavelength [11]. Rabi cou-
pling is assumed for simplicity, but our scheme could be
more robustly implemented using Raman transitions [12]
for adiabatic passage [13,14] between Zeeman or hyper-
fine levels, possible even with modulated cw lasers [15].

We have shown how coherent manipulation of the
momentum of a two-level atom may be analyzed as a
momentum state quantum computer, allowing a cooling
process corresponding to division of the momentum by
two. The scheme, which we regard as ‘‘algorithmic cool-
ing’’ [16] in its broadest sense, could be extended to three
dimensions. The broad bandwidth of the pulsed inter-
actions renders it suitable for molecules, for which the
large impulse per cycle would be a particular advantage.
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