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Abstract
We present a generic transfer matrix approach for the description of the interaction of atoms
possessing multiple ground state and excited state sublevels with light fields. This model
allows us to treat multilevel atoms as classical scatterers in light fields modified by, in
principle, arbitrarily complex optical components such as mirrors, resonators, dispersive and
dichroic elements, and filters. We verify our formalism for two prototypical sub-Doppler
cooling mechanisms and show that it agrees with the standard literature.

PACS numbers: 42.50.Wk, 37.10.De, 37.10.Vz, 42.70.Qs

1. Introduction

The two-level model of atoms interacting with light fields [1]
has often been used to explore optical cooling mechanisms
[2–4]. Its inherent simplicity—the atom has one ground state
and one excited state—makes the resulting models amenable
to analysis, but also suppresses mechanisms [5] that, in the
appropriate parameter regimes, dominate the interaction.

A notable example of such an initially overlooked
mechanism in atomic physics is three-dimensional optical
molasses [6]. By means of the two-level model, one can
predict the equilibrium temperature, the so-called ‘Doppler’
temperature TD, of atoms in molasses to be h̄0, where
0 is the (half-width at half-maximum) linewidth of the
transition from the excited to the ground level [4]. Data from
early three-dimensional molasses experiments contradicted
this [7], showing that the achievable equilibrium temperature
was in fact much lower. This discrepancy was resolved
independently by two groups [5, 8], both explanations relying
on the inclusion of the manifold of magnetic sublevels in each
of the ground and excited states. In particular, the motion of
the atoms in the optical field leads to a non-adiabatic following
of the magnetic sublevel populations, which gives rise to a
strong viscous force and efficient cooling to temperatures
significantly lower than the Doppler temperature.

We recently [9] explored a new scattering theory
that deals with the interaction of light and matter in a

unified form applicable to microscopic and macroscopic
systems. In that work we only considered the two-level
atom model and showed, in particular, how our model can
explain such mechanisms as standard optical molasses and
mirror-mediated cooling [10]. In this paper we extend this
model to deal with magnetic sublevels, in much the same
spirit as [5]. In due course, this extension will enable us
to deal with multilevel atoms interacting with an arbitrarily
complex system composed of immobile mirrors, cavities,
MEMS devices, etc., without resorting to a quantized model
for such a system.

After we introduce the general extension in the next
section, we then proceed to explore two prototypical
systems—the J =

1
2 → J ′

=
3
2 transition, leading to the

‘Sisyphus’ cooling mechanism, and the J = 1 → J ′
= 2

transition—in sections 3 and 4, respectively.

2. A transfer matrix relating Jones vectors

We investigate the interaction of atoms with light of different
polarizations. To this end, we denote the two polarization
basis vectors by µ and ν, whereby the standard circular
polarization basis is equivalent to setting µ = σ + and ν = σ−.
Starting from the transfer matrix model explored in [9] and
using the definitions in figure 1, we replace each of the field
modes by a corresponding Jones vector, similar to the model
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Figure 1. Moving scatterer interacting with four field modes
represented by the Jones vectors A, B, C and D. The scatterer has
velocity v and is described by means of its polarizability tensor ζ.
The field mode amplitudes are, in general, functions of the
wavenumber k.

used in [11]. Thus, for example,

A(k) → A(k) =

(
Aµ(k)

Aν(k)

)
, (1)

and similarly for B, C and D, which are the mode amplitudes
in the positive frequency part of the electric field. The transfer
matrix M , describing the effect of the scatterer on the four
field modes by means of the relationship(

A(k)

B(k)

)
= M

(
C(k)

D(k)

)
, (2)

is now transformed into an order 4 tensor of the form

M =

[
m11 m12

m21 m22

]
, (3)

where each of mαβ (α, β = 1, 2) is a 2 × 2 matrix relating
the respective Jones vector components. A general recipe
for transforming the formulae for the field mode amplitudes,
as given in [9], can be summarized by means of the two
replacements

1 → 1 =

[
1 0
0 1

]
and ζ → ζ, (4)

wherever necessary. In particular, then,

M =

[
1 − iζ −iζ

iζ 1 + iζ

]
→M =

[
1 − iζ −iζ

iζ 1 + iζ

]
. (5)

The polarizability tensor ζ is defined as the steady-state
expectation value of the polarizability operator χ̂,

ζ = Tr
(
ρst

· χ̂
)
=

∑
i, j

〈 j |ρst
|i〉〈i |χ̂| j〉, (6)

where ρst is the steady-state density matrix describing the
system and the summation runs over all the internal sublevels
of the atom. The matrix elements of the polarizability operator
χ̂, defined similarly to equations (14.9–24) of [12], are order
4 tensors that read in the general µ, ν basis

〈i |χ̂| j〉 = ζ0

∑
e

[
〈i |d̂µ|e〉〈e|d̂µ| j〉 〈i |d̂µ|e〉〈e|d̂ν | j〉

〈i |d̂ν |e〉〈e|d̂µ| j〉 〈i |d̂ν |e〉〈e|d̂ν | j〉

]
,

(7)
where ζ0 embodies the dimensional constants and the
frequency dependence of the polarizability of the atom (see,
for example, [13]). In equation (7), the dipole moment
operator d̂µ (d̂ν) is related to the µ(ν) polarized light field
and the sum runs over all the internal sublevels, e, of the atom.

The matrix elements of d̂µ (d̂ν) are given by the appropriate
Clebsch–Gordan coefficients.

Importantly, this new transfer matrix still retains all
its properties, allowing us to model the interaction of the
multilevel atom with an arbitrary system of immobile optical
elements such as mirrors, cavities, waveplates, etc. As in our
previous work [9], this interaction is accounted for by the
multiplication of the various transfer matrices of the elements
making up the system; this model is, in principle, applicable
to systems of arbitrary complexity.

Finally, we recall that the diagonal elements, 〈i |ρst
|i〉, of

ρst are the populations in each of the sublevels, whereas its
off-diagonal elements, 〈i |ρst

| j〉, are the respective coherences.
The matrix elements of ρst are obtained from the appropriate
optical Bloch equations (see, for example, the procedure
outlined in [14]). We note here that, through its dependence
on ρst,M depends on the fields that it helps to determine and
thus equation (2) will in general become a set of nonlinear
equations. In cases, like the ones considered in the following
sections, where only one multilevel atom is interacting with
a linear optical system, this problem may be solved using
a procedure similar to the one outlined below: the fields
surrounding the atom are obtained from the input fields
through linear operations and then used with the optical Bloch
equations to obtain the populations and coherences of the
atom’s various levels. Knowledge of these quantities then
determines the fields, and hence the forces acting on the atom,
completely.

In the following sections, we will restrict our discussion
to the case where the input field is not modified by other
transfer matrices. We will apply this mechanism to investigate
the behaviour of atoms in two cases where the polarization
of the light varies in space on scales of the order of the
wavelength to verify the validity of the model given by
equations (5)–(7). In the first instance, we illuminate our
atom with two counterpropagating linearly polarized beams.
We choose the planes of polarization of the two beams to
be orthogonal to each other. The second configuration that
we will investigate involves illuminating the atom with two
circularly polarized beams, choosing opposite handedness for
the two beams. These two cases mirror those in [5].

3. Atoms in a gradient of polarization

In this and the following sections, we will adopt the
low-intensity hypothesis. This allows us to simplify the
optical Bloch equations and the resulting system considerably
by neglecting the populations and coherences of the excited
state sublevels. We can thus replace ρst by the ground state
steady-state density matrix, ρst

g . We denote the diagonal
element (i, i) of ρst

g , the population in sublevel i , by 5i ,
and the off-diagonal element (i, j), the coherence between
sublevels i and j , by Ci, j .

Here we will discuss what is perhaps the simplest
transition between two levels with multiple magnetic
sublevels: the J =

1
2 → J ′

=
3
2 transition. In this case, we

have two ground sublevels so that ρst
g is a 2 × 2 matrix.

Figure 2 tabulates the Clebsch–Gordan coefficients required
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Figure 2. Clebsch–Gordan coefficients for a J =
1
2 → J ′

=
3
2

transition.

to evaluate ζ. Thus we have

ρst
g =

[
5−1/2 C−1/2,+1/2

C+1/2,−1/2 5+1/2

]
(8)

and

χ̂= ζ0


[

1
3 0
0 1

]
0

0
[

1 0
0 1

3

]
 , (9)

whereby

ζ = ζ0

([
1
3 0
0 1

]
5−1/2 +

[
1 0
0 1

3

]
5+1/2

)
. (10)

Suppose, now, that we illuminate the atom with two
counterpropagating beams having orthogonal linear
polarization and equal intensity. This can be represented
by setting

B(k) =
B

√
2

(
1
1

)
exp(ikx − iπ/4) (11)

and

C(k) =
iB
√

2

(
1

−1

)
exp(−ikx + iπ/4), (12)

where the shift in the x coordinate is introduced to simplify
our expressions. Using the optical Bloch equations, we can
show that the steady-state populations in the ground sublevels
at zero atomic velocity are given by

5−1/2 = cos2(kx) and 5+1/2 = sin2(kx), (13)

noting that the populations do not depend on the field
amplitudes in the low-intensity regime.

We work to lowest order in ζ0 and make use of the above
relationships to find the net force acting on the atom [9, 15]:

F = h̄k
(
|A|

2 + |B|
2
− |C|

2
− |D|

2
)

= 2h̄k Im
{[
ζ
(
B + C

)]
·
(
B − C

)?}
+ 4

v

c
h̄k Im

{(
ζB
)
· C? +

(
ζC
)
· B?

}
− 2

v

c
h̄k2 Im

{[
∂ζ

∂k

(
B + C

)]
·
(
B + C

)?}
≈ 2h̄k Im

{[
ζ
(
B + C

)]
·
(
B − C

)?}
+ 2

v

c
h̄k2 Im

{[
∂ζ

∂k

(
B + C

)]
·
(
B + C

)?}
, (14)

where we have assumed that ‖k ∂ζ/∂k‖ � ‖ζ‖. The
velocity-dependent force terms in the above expression arise
through the Doppler shifting of photons both between field
modes in the same polarization and between field modes in
different polarizations; these mechanisms are accounted for
by the diagonal and off-diagonal terms in ζ, respectively.
These terms emerge through the velocity-dependent terms in
the generalized transfer matrix.

In the present case, equation (14) simplifies
approximately to

F =
4
3 h̄kζ0|B|

2 sin(2kx)
(
5+1/2 − 5−1/2

)
= −

2
3 h̄k|B|

2ζ0 sin(4kx), (15)

assuming that ζ0 is real for simplicity.
We now let τp be a characteristic residence time of

the two ground state sublevels, which emerges from the
optical Bloch equations and introduces a term, proportional
to v, in the populations of each of the sublevels written
in equation (13). This adds a velocity-dependent term to
equation (15), giving an overall force

F = −
2
3 h̄k|B|

2ζ0 sin(4kx) −
8
3 h̄k2

|B|
2ζ0vτp sin2(2kx),

(16)
which agrees precisely with the standard literature (cf
equations (4.20) and (4.23) in [5]).

4. Atoms in a gradient of ellipticity

If we illuminate an atom with two counterpropagating beams
of light in a σ +–σ− configuration, rich dynamics are obtained
not in the simplest (J =

1
2 → J ′

=
3
2 ) case, but in the next

simplest, where the ground state has three magnetic sublevels
(J = 1) and the excited state five (J ′

= 2). In this case, then,
we can express ρst

g and χ̂ as

ρst
g =

 5−1 C−1,0 C−1,+1

C0,−1 50 C0,+1

C+1,−1 C+1,0 5+1

 (17)

and

χ̂= ζ0



[
1
6 0
0 1

]
0

[
0 1

6
0 0

]
0

[ 1
2 0
0 1

2

]
0[

0 0
1
6 0

]
0

[
1 0
0 1

6

]


, (18)

using the Clebsch–Gordan coefficients in figure 3. Together,
these give

ζ = ζ0

([
1
6 0
0 1

]
5−1 +

[ 1
2 0
0 1

2

]
50 +

[
1 0
0 1

6

]
5+1

+

[
0 1

6
0 0

]
C +

[
0 0
1
6 0

]
C?

)
(19)

with C = C+1,−1 = C?
−1,+1 = 〈+1|ρst

g | − 1〉 representing the
nonzero coherence between the m J = +1 and the m J =

−1 sublevels. Note that we again apply the low-intensity
hypothesis, thereby replacing ρst with ρst

g .
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Figure 3. Clebsch–Gordan coefficients for a J = 1 → J ′
= 2

transition.

We now illuminate the atom with two counterpropagating
beams of equal intensity, B and C, possessing σ + and σ−

polarization, respectively:

B(k) = B

(
1
0

)
exp(ikx) and C(k) = B

(
0
1

)
exp(−ikx).

(20)
We again use equation (14) to derive the force acting on the
atom, which is given by

F = 2h̄k|B|
2 Im

{
5
6ζ0
(
5+1 − 5−1

)
+ 1

6 iζ0 Im{C exp(−2ikx)}
}

− 2 v
c h̄k2

|B|
2 Im{∂ζ0/∂k}

(
7
6

(
5+1 + 5−1

)
+ 50

+ 1
3 Re{C exp(−2ikx)}

)
, (21)

where the populations and coherences are again obtained
from the optical Bloch equations and can be found in [5].
By observing the natural correspondence between ζ0 and s±

in this latter reference, we can see that our expression for
the force acting on the atom again agrees with the standard
literature to first order in v

c (cf equation (5.9) in [5]). The
resulting friction force is thus due to both the Doppler shift, as
evident in the terms shown explicitly in equation (21), and the
non-adiabatic following of the atomic sublevel populations.

5. Conclusions

By revisiting the transfer matrix formalism and expressing
the polarizability of a scatterer as the expectation value of a
quantum operator, we have endowed it with a strong quantum
character that allows us to handle atoms with multiple
ground and excited state sublevels. In principle, our extended
formalism is only limited by its reliance on the optical Bloch
equations to give expressions for the ground state populations
and coherences; we have retained the character of our earlier
formalism that allowed us to work to arbitrary order in the
polarizability. We have applied this theory to two standard

sub-Doppler cooling configurations, the so-called ‘lin–⊥–lin’
and ‘σ +–σ−’ configurations and thereby reproduced known
expressions for the force acting on the atom.

Acknowledgments

This work was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant EP/E058949/1
and by the Cavity-Mediated Molecular Cooling network
within the EuroQUAM programme of the European Science
Foundation (ESF), as well as by the National Scientific Fund
of Hungary (contract no. NF68736).

References

[1] Shore B W 1990 The Theory of Coherent Atomic Excitation:
Simple Atoms and Fields vol 1 (New York: Wiley-VCH)

[2] Gordon J P and Ashkin A 1980 Motion of atoms in a radiation
trap Phys. Rev. A 21 1606–17

[3] Dalibard J and Cohen-Tannoudji C 1985 Atomic motion in
laser light: connection between semiclassical and quantum
descriptions J. Phys. B: At. Mol. Opt. Phys. 18 1661–83

[4] Metcalf H J and van der Straten P 2003 Laser cooling and
trapping of atoms J. Opt. Soc. Am. B 20 887–908

[5] Dalibard J and Cohen-Tannoudji C 1989 Laser cooling below
the doppler limit by polarization gradients: simple
theoretical models J. Opt. Soc. Am. B 6 2023–45

[6] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A
1985 Three-dimensional viscous confinement and cooling of
atoms by resonance radiation pressure Phys. Rev. Lett. 55
48–51

[7] Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L
and Metcalf H J 1988 Observation of atoms laser cooled
below the doppler limit Phys. Rev. Lett. 61 169–73

[8] Ungar P J, Weiss D S, Riis E and Chu S 1989 Optical molasses
and multilevel atoms: theory J. Opt. Soc. Am. B 6 2058–71

[9] Xuereb A, Domokos P, Asbóth J, Horak P and Freegarde T
2009 Scattering theory of cooling and heating in
optomechanical systems Phys. Rev. A 79 053810

[10] Xuereb A, Horak P and Freegarde T 2009 Atom cooling using
the dipole force of a single retroflected laser beam Phys.
Rev. A 80 013836

[11] Spreeuw R J C, Beijersbergen M W and Woerdman J P 1992
Optical ring cavities as tailored four-level systems: an
application of the group u(2,2) Phys. Rev. A 45 1213–29

[12] Shore B W 1990 The Theory of Coherent Atomic Excitation:
Simple Atoms and Fields vol 2 (New York: Wiley-VCH)

[13] Wang D-W, Li A-J, Wang L-G, Zhu S-Y and Zubairy M S
2009 Effect of the counterrotating terms on polarizability in
atom-field interactions Phys. Rev. A 80 063826

[14] Cohen-Tannoudji C 1977 Atoms in strong resonant fields
Frontiers in Laser Spectroscopy, Proc. of the Les Houches
Summer School, Session XXVII ed R Balian, S Haroche and
S Liberman (Amsterdam: North Holland)

[15] Asbóth J K, Ritsch H and Domokos P 2008 Optomechanical
coupling in a one-dimensional optical lattice Phys. Rev. A
77 063424

4

http://dx.doi.org/10.1103/PhysRevA.21.1606
http://dx.doi.org/10.1088/0022-3700/18/8/019
http://dx.doi.org/10.1364/JOSAB.20.000887
http://dx.doi.org/10.1364/JOSAB.6.002023
http://dx.doi.org/10.1103/PhysRevLett.55.48
http://dx.doi.org/10.1103/PhysRevLett.55.48
http://dx.doi.org/10.1103/PhysRevLett.61.169
http://dx.doi.org/10.1364/JOSAB.6.002058
http://dx.doi.org/10.1103/PhysRevA.79.053810
http://dx.doi.org/10.1103/PhysRevA.80.013836
http://dx.doi.org/10.1103/PhysRevA.45.1213
http://dx.doi.org/10.1103/PhysRevA.77.063424

	1. Introduction
	2. A transfer matrix relating Jones vectors
	3. Atoms in a gradient of polarization
	4. Atoms in a gradient of ellipticity
	5. Conclusions
	Acknowledgments
	References

