Southampton School of Physics and Astronomy

Classical Mechanics PHYS 2006 Tim Freegarde

Classical Mechanics

LINEAR MOTION OF SYSTEMS OF PARTICLES	centre of mass Newton's 2nd law for bodies (internal forces cancel)
ANGULAR MOTION	rotations and infinitessimal rotations
	angular velocity vector, angular momentum, torque
	parallel and perpendicular axis theorems
	rigid body rotation, moment of inertia, precession
GRAVITATION & KEPLER'S LAVVS	conservative forces, law of universal gravitation
	2-body problem, reduced mass
	planetary orbits, Kepler's laws
	energy, effective potential
NON-INERTIAL REFERENCE FRAMES	centrifugal and Coriolis terms
	Foucault's pendulum, weather patterns
NORMAL MODES	coupled oscillators, normal modes
	coupled oscillators, normal modes

Fermat's principle of least time

• refraction at a plane surface

Pierre de Fermat (1601-1665)

Fermat's principle of least time

• refraction at a plane surface

 light rays follow the path between two points

Pierre de Fermat (1601-1665)

Snell's law of refraction

• refraction at a plane surface

- light rays follow the path of least time between two points
- $\eta_S \sin \vartheta_S = \eta_P \sin \vartheta_P$

Willebrord Snel van Royen (Leiden, 1580-1626)

Feynman path integral

PRINCIPLE OF LEAST ACTION

• trajectory is that which minimizes $\mathcal{S} = \int_{t_1}^{t_2} \mathcal{L} \, \mathrm{d}t$ ACTION

Richard P Feynman (1918-1988)

Lagrangian Mechanics

CALCULUS OF VARIATIONS if $\mathcal{F}(a, a')$ has been chosen to minimize $\mathcal{S} = \int_{b_1}^{b_2} \mathcal{F}(a, a') \, \mathrm{d}b$ least (or stationary) action $\frac{\partial \mathcal{F}}{\partial a} - \frac{\mathrm{d}}{\mathrm{d}b} \left(\frac{\partial \mathcal{F}}{\partial a'} \right) = 0$ Euler-lagrange equation then

LAGRANGIAN MECHANICS

set

 $\mathcal{F}
ightarrow \mathcal{L} = \mathcal{T} - \mathcal{V}$ a
ightarrow x, y, ϑ etc. (coordinate variables) $b \rightarrow t$

Diffracting atoms

 stimulated Raman transitions equivalent to Bragg scattering from moving standing wave

Inertial sensing using light

- Mach-Zehnder interferometer
- quantum wavefunction split and recombined
- laser-cooled atoms sense inertial Coriolis acceleration
- phase depends upon rotation

Southampton School of Physics and Astronomy

Classical Mechanics PHYS 2006 Tim Freegarde

QUESTION TERMINOLOGY

- State, What, Identify, Express, Find
 - no derivation required
- Explain, Describe, How
 - in words...
- Deríve, Prove, Show that, Determine
 - state assumptions, proceed logically
- Evaluate, Indícate, Calculate, Estímate
 - numbers, with clear assumptions
- Sketch
 - as it says...

DEGREE CLASSIFICATIONS

- First class (70%)
 - Abílity to extend or adapt standard derívations ξ manipulations to unseen problems
 - Demonstrate good insight & knowledge beyond course material
- 2:1 (60%)
 - Recall of standard derivations, manipulations ξ examples
 - Ability to discuss critically ξ demonstrate some insight
- 2:2 (50%)
 - Recall of símple derívatíons, manipulations ξ examples
 - Some ability to discuss critically
- Third (40%)
 - Knowledge of basic definitions, formulae, phenomena ξ examples
 - Ability to apply formulae directly

Southampton School of Physics and Astronomy

Classical Mechanics PHYS 2006 Tim Freegarde

