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Newton’s law of Universal Gravitation

e Exact analogy of Coulomb electrostatic interaction

e gravitational force between two masses 1 and M2

e gravitational field
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e gravitational potential
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Elliptical orbit
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Conic section orbits
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Conic section orbits
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Conic section orbi
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Conic section orbits
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Kepler’s laws

Planetary orbits are ellipses with the
Sun at one focus

The radius vector from Sun to planet
sweeps out equal areas in equal times

The square of the orbital period is proportional
to the cube of the semimajor axis
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Conic section orbits
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Planetary orbit

distance from Sun

Planetary orbits are ellipses with the (10°km)
Sun at one focus

The radius vector from Sun to planet
sweeps out equal areas in equal times

The square of the orbital period is proportional
to the cube of the semimajor axis
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Effective potential

e angular momentum conserved positive 17 term

dominates at small r
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Yukawa potential

HIDEKI YUKAWA
(1907-1981)

angular momentum conserved

|
E = Emf'z + Ur(r)

where
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UL(r) =

2m r2 r
YUKAWA POTENTIAL

attraction between nucleons
precession of perihelion
distinct allowed regions for small E

alpha decay




Three-body problem

notoriously intractable
chaotic motion:

e tiny difference in initial conditions
results in very different trajectory

total energy conserved

STARS OF EQUAL MASS,
a_ngular momentu_m not conserved, PIXED POSITIONS
since torque required to hold stars
in place




Classical Mechanics

centre of mass
LINEAR MOTION OF

SYSTEMS OF PARTICLES Newton’s 2nd law for bodies (internal forces cancel)

rocket motion

rotations and infinitessimal rotations

angular velocity vector, angular momentum, torque
ANGULAR MOTION : :

parallel and perpendicular axis theorems

rigid body rotation, moment of inertia, precession

conservative forces, law of universal gravitation

GRAVITATION & 2-body problem, reduced mass
KEPLER’S LAWS planetary orbits, Kepler’s laws

energy, effective potential

NON-INERTIAL centrifugal and Coriolis terms
REFERENCE FRAMES Foucault’s pendulum, weather patterns

coupled oscillators, normal modes
NORMAL MODES

boundary conditions, Eigenfrequencies




