Southampton School of Physics and Astronomy

Classical Mechanics PHYS 2006 Tim Freegarde

Newton's law of Universal Gravitation

- Exact analogy of Coulomb electrostatic interaction
- gravitational force between two masses m_1 and $\overline{m_2}$

$$\mathbf{F}_{12} = -\mathbf{F}_{21} = rac{Gm_1m_2}{r_{12}^2} \mathbf{\hat{r}}_{12} = m_1 \mathbf{g}$$

• gravitational field

$${f g}({f r}_{12})=-rac{Gm_2}{r_{12}^2}{f \hat r}_{12}=-{f
abla}\Phi$$

• gravitational potential

$$\Phi(r_{12}) = -rac{Gm_1}{r_{12}}$$

Elliptical orbit

e

- eccentricity
- constant
- semi latus rectum
- polar equation
- Cartesian equation
- semimajor axis
- semiminor axis
- total energy

e

- eccentricity
- constant
- semi latus rectum
- polar equation
- Cartesian equation
- semimajor axis
- semiminor axis
- total energy

http://www.personal.psu.edu/smh408/

Alastair Rae

Magnus Manske

Kepler's laws

- 1. Planetary orbits are ellipses with the Sun at one focus
- 2. The radius vector from Sun to planet sweeps out equal areas in equal times
- **3.** The square of the orbital period is proportional to the cube of the semimajor axis

- eccentricity
- constant
- semi latus rectum
- polar equation
- Cartesian equation
- semimajor axis
- semiminor axis
- total energy

Planetary orbit

- 1. Planetary orbits are ellipses with the Sun at one focus
- 2. The radius vector from Sun to planet sweeps out equal areas in equal times
- **3.** The square of the orbital period is proportional to the cube of the semimajor axis

Effective potential

• angular momentum conserved

$$E=rac{1}{2}m\dot{r}^2+U_L(r)$$

where

$$U_L(r)=rac{L^2}{2m}rac{1}{r^2}-rac{GM}{r}$$

• effective potential for radial motion

Yukawa potential

• angular momentum conserved

$$E=rac{1}{2}m\dot{r}^2+U_L(r)$$

where

$$U_L(r) = rac{L^2}{2m} rac{1}{r^2} - rac{lpha e^{-oldsymbol{\kappa} r}}{r}$$
 yukawa potenti

- attraction between nucleons
- precession of perihelion
- distinct allowed regions for small *E*
- alpha decay

Three-body problem

- notoriously intractable
- chaotic motion:
 - tiny difference in initial conditions results in very different trajectory

- total energy conserved
- angular momentum not conserved, since torque required to hold stars in place

Classical Mechanics

LINEAR MOTION OF SYSTEMS OF PARTICLES	centre of mass
	Newton's 2nd law for bodies (internal forces cancel)
	rocket motion
rotations and infinitessimal rotations	
ANGULAR MOTION	angular velocity vector, angular momentum, torque
	parallel and perpendicular axis theorems
	rigid body rotation, moment of inertia, precession
GRAVITATION &	conservative forces, law of universal gravitation
	2-body problem, reduced mass
KEPLER'S LAWS	planetary orbits, Kepler's laws
KEPLER'S LAWS	planetary orbits, Kepler's laws energy, effective potential
KEPLER'S LAWS	planetary orbits, Kepler's laws energy, effective potential
KEPLER'S LAWS	planetary orbits, Kepler's laws energy, effective potential centrifugal and Coriolis terms
KEPLER'S LAWS NON-INERTIAL REFERENCE FRAMES	planetary orbits, Kepler's laws energy, effective potential centrifugal and Coriolis terms Foucault's pendulum, weather patterns
KEPLER'S LAWS NON-INERTIAL REFERENCE FRAMES	planetary orbits, Kepler's laws energy, effective potential centrifugal and Coriolis terms Foucault's pendulum, weather patterns coupled oscillators, normal modes