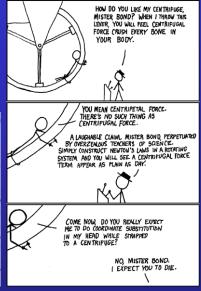


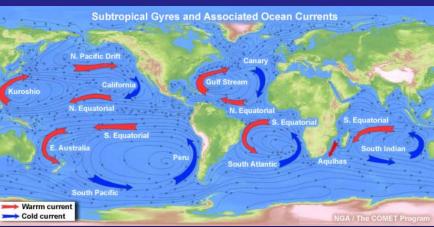
Classical Mechanics PHYS 2006

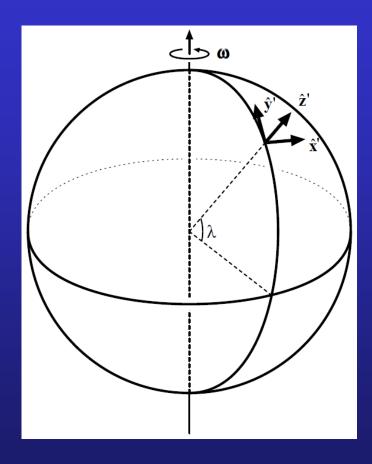
Tim Freegarde


Classical Mechanics

centre of mass
Newton's 2nd law for bodies (internal forces cancel)
rocket motion
rotations and infinitessimal rotations
angular velocity vector, angular momentum, torque
parallel and perpendicular axis theorems
rigid body rotation, moment of inertia, precession
conservative forces, law of universal gravitation
2-body problem, reduced mass
planetary orbits, Kepler's laws
energy, effective potential
centrifugal and Coriolis terms
Foucault's pendulum, weather patterns
coupled oscillators, normal modes
boundary conditions, Eigenfrequencies

- local coordinates not an inertial frame
- 'ficticious' forces: centrifugal
 - Coriolis

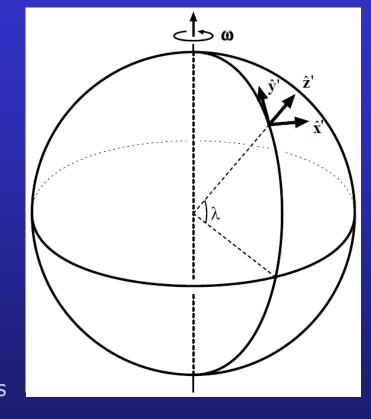




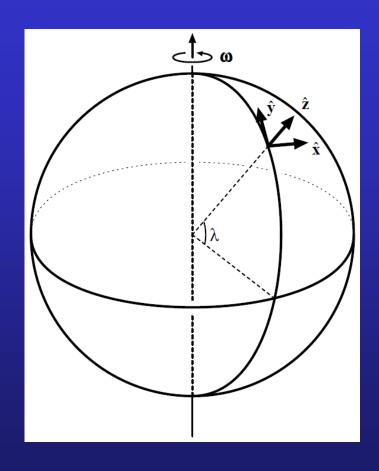
$$\mathbf{a} = \mathbf{a_i}\mathbf{\hat{i}} + \mathbf{a_j}\mathbf{\hat{j}} + \mathbf{a_k}\mathbf{\hat{k}} = \mathbf{a_i'}\mathbf{\hat{i}'} + \mathbf{a_j'}\mathbf{\hat{j}'} + \mathbf{a_k'}\mathbf{\hat{k}'}$$
inertial frame local, rotating frame

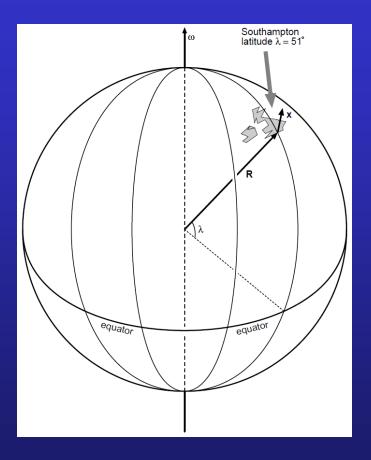
 differentiate twice, taking into account variation of local (rotating) unit vectors

$$m\ddot{\mathbf{r}} = \mathbf{F} - 2m\,oldsymbol{\omega}\! imes\!\dot{\mathbf{r}} - m\,oldsymbol{\omega}\! imes\!(oldsymbol{\omega}\! imes\!\mathbf{r})$$
Coriolis centrifugal



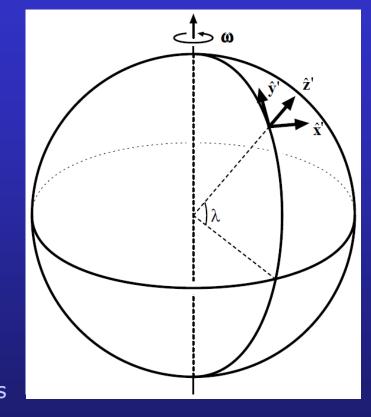
$$\mathbf{a} = a_i \hat{\mathbf{i}} + a_j \hat{\mathbf{j}} + a_k \hat{\mathbf{k}} = a_i' \hat{\mathbf{i}}' + a_j' \hat{\mathbf{j}}' + a_k' \hat{\mathbf{k}}'$$
inertial frame local, rotating frame


 differentiate twice, taking into account variation of local (rotating) unit vectors


$$m\ddot{\mathbf{r}} = \mathbf{F} - 2m\,oldsymbol{\omega}\! imes\!\dot{\mathbf{r}} - m\,oldsymbol{\omega}\! imes\!(oldsymbol{\omega}\! imes\!\mathbf{r})$$
Coriolis centrifugal

• in local coordinate frame $\{\hat{\mathbf{x}}', \hat{\mathbf{y}}', \hat{\mathbf{z}}'\}$, this becomes

$$minom{\ddot{x}}{\ddot{y}} = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \ddot{z} igg) = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \cos\lambda igg) \end{bmatrix} - 2m\omega igg(\dot{z}\cos\lambda - \dot{y}\sin\lambda igg) \ \dot{x}\sin\lambda \ -\dot{x}\cos\lambda igg) \end{pmatrix}$$



$$\mathbf{a} = a_i \hat{\mathbf{i}} + a_j \hat{\mathbf{j}} + a_k \hat{\mathbf{k}} = a_i' \hat{\mathbf{i}}' + a_j' \hat{\mathbf{j}}' + a_k' \hat{\mathbf{k}}'$$
inertial frame local, rotating frame

 differentiate twice, taking into account variation of local (rotating) unit vectors

$$m\ddot{\mathbf{r}} = \mathbf{F} - 2m\,\boldsymbol{\omega}\! imes\!\dot{\mathbf{r}} - m\,\boldsymbol{\omega}\! imes\!(\boldsymbol{\omega}\! imes\!\mathbf{r})$$

• in local coordinate frame $\{\hat{\mathbf{x}}', \hat{\mathbf{y}}', \hat{\mathbf{z}}'\}$, this becomes

$$minom{\ddot{x}}{\ddot{y}} = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \ddot{z} igg) = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \cos\lambda igg) \ -2m\omega igg(\dot{z}\cos\lambda - \dot{y}\sin\lambda igg) \ \dot{x}\sin\lambda \ -\dot{x}\cos\lambda \ \end{pmatrix}$$

Coriolis effect

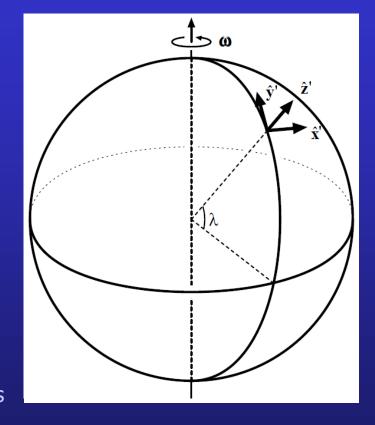
$$\mathbf{F}_{ ext{Coriolis}} = -2m\,oldsymbol{\omega} imes \mathbf{\dot{r}}$$

The Coriolis Effect

MIT Department of Physics Technical Services Group

www.youtube.com/watch?v=dt_XJp77-mk

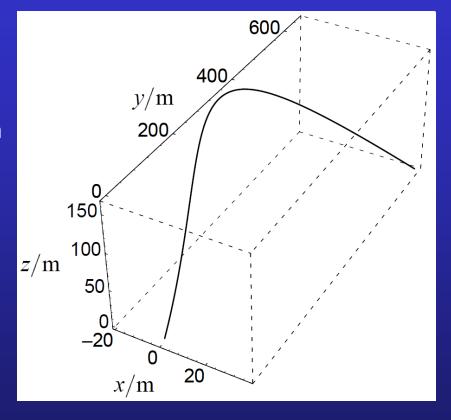
Coriolis effect


www.youtube.com/watch?v=jX7dcl_ERNs

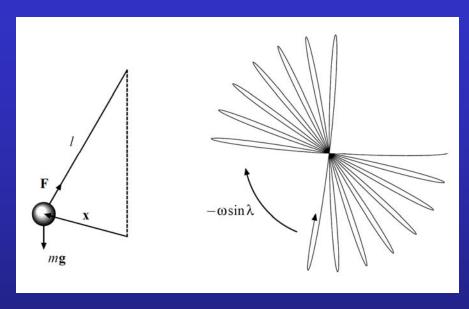
$$\mathbf{a} = \mathbf{a_i}\mathbf{\hat{i}} + a_j\mathbf{\hat{j}} + a_k\mathbf{\hat{k}} = \mathbf{a_i'}\mathbf{\hat{i}'} + a_j'\mathbf{\hat{j}'} + a_k'\mathbf{\hat{k}'}$$
inertial frame local, rotating frame

 differentiate twice, taking into account variation of local (rotating) unit vectors

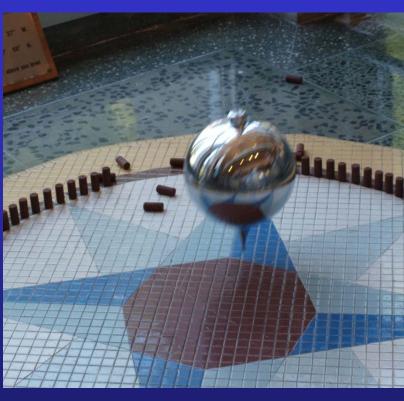
$$m\ddot{\mathbf{r}} = \mathbf{F} - 2m\,\boldsymbol{\omega}\! imes\!\dot{\mathbf{r}} - m\,\boldsymbol{\omega}\! imes\!(\boldsymbol{\omega}\! imes\!\mathbf{r})$$


• in local coordinate frame $\{\hat{\mathbf{x}}', \hat{\mathbf{y}}', \hat{\mathbf{z}}'\}$, this becomes

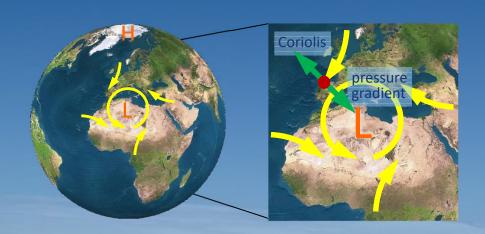
$$minom{\ddot{x}}{\ddot{y}} = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \ddot{z} \end{pmatrix} = \mathbf{F}_{\mathrm{ext}} + egin{align*} m\mathbf{g} + m\omega^2R\cos\lambda igg(-\sin\lambda igg) \ \cos\lambda \end{pmatrix} - 2m\omega igg(\dot{z}\cos\lambda - \dot{y}\sin\lambda igg) \ \dot{x}\sin\lambda \ -\dot{x}\cos\lambda \end{pmatrix}$$

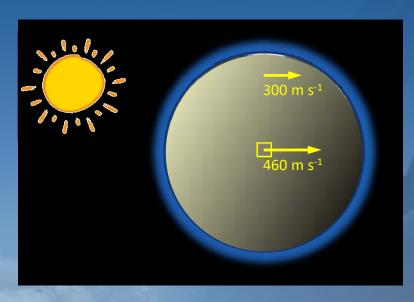

Cannon shell

- velocity varies during trajectory
- Coriolis correction hence changes direction along the shell's path

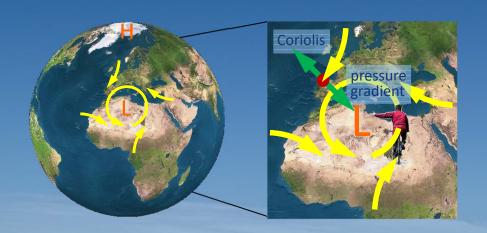


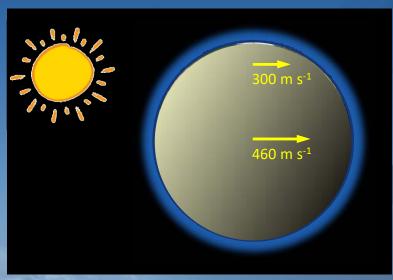
$$minom{\ddot{x}}{\ddot{y}}=\mathbf{F}_{\mathrm{ext}}+egin{array}{c} m\mathbf{g}+m\omega^2R\cos\lambdaigg(-\sin\lambdaigg) \ \ddot{z} \end{pmatrix}=2m\omegaigg(ar{z}\cos\lambda-\dot{y}\sin\lambdaigg) \ \ddot{x}\sin\lambda \ \dot{z}\sin\lambda \ -\dot{x}\cos\lambda \end{pmatrix}$$


Foucault's pendulum



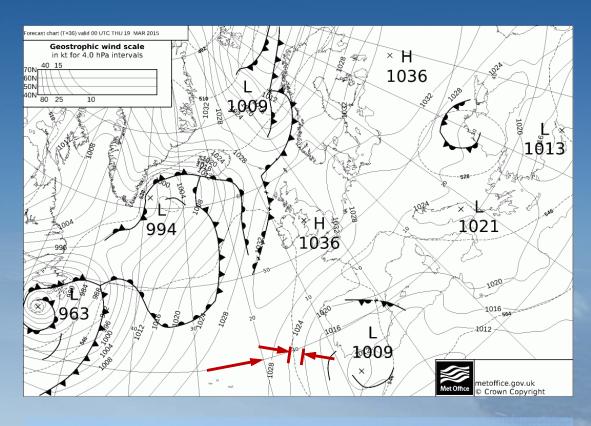
$$migg(\ddot{x}\ \ddot{y}igg) = -\omega_0^2igg(egin{array}{c} x \ y \end{array}igg) - 2\omega\sin\lambdaigg(egin{array}{c} -\dot{y} \ \dot{x} \end{array}igg)$$


Coriolis effect

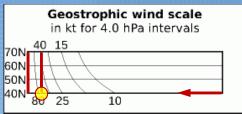


- tendency to turn right in N hemisphere
- to observer moving with Earth, appears as virtual force
- pressure gradient balances Coriolis & centrifugal forces
- at altitude, flow follows isobars around high/low pressure

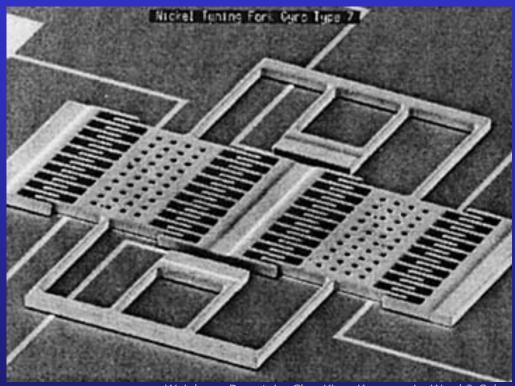
Buys-Ballot's law



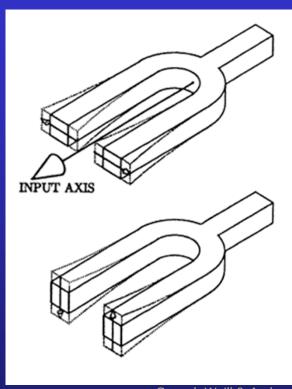
 with the wind on your back, in the N hemisphere, the low pressure is on the left



Geostrophic wind


GEOSTROPHIC WIND

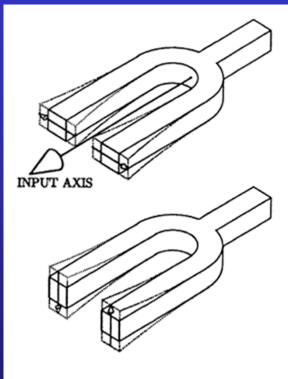
- closer isobars
 - → higher Coriolis force
 - → stronger wind



- isobars: pressure contours (4 hPa)
- cold/warm fronts divide air masses

Vibrating structure gyroscope

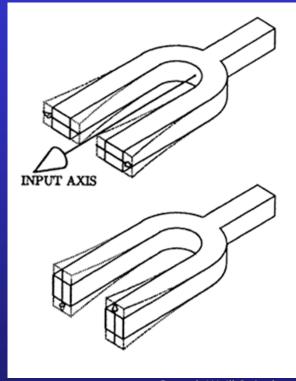
Weinberg, Bernstein, Cho, King, Kourepenis, Ward & Sohn, Int Conf Gyrosc Technol & Nav (2), 9-87 (1995)



Grewal, Weill & Andres, Global Positioning Systems, Inertial Navigation and Integration (2007)

Vibrating structure gyroscope

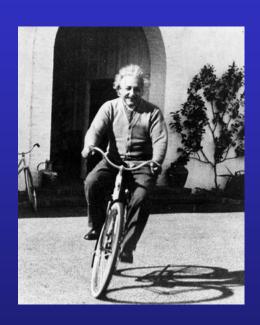
Drosophila melanogaster, Shwetha Mureli



Grewal, Weill & Andres, Global Positioning Systems, Inertial Navigation and Integration (2007)

Vibrating structure gyroscope

Life on Earth, BBC (1979)


Grewal, Weill & Andres, Global Positioning Systems, Inertial Navigation and Integration (2007)

- F W Meredith, Control of equilibrium in the flying insect, Nature **163**, 74 (1949)
- Michael Dickinson, How a fly flies, TED www.youtube.com/watch?v=e_44G-kE8IE

Classical Mechanics PHYS 2006

Tim Freegarde

