Motion of Systems of Particles

This chapter contains formal arguments showing (i) thatake external force act-
ing on a system of particles is equal to the rate of changs tdtial linear momentum
and (ii) that the total external torque acting is equal tortite of change of the total
angular momentum. Although you should ensure you undetstemarguments, the
important point is the simple and useful general resultctviemerge.

1.1 Linear Motion

Consider a system & particles labelled 2, ..., N with massesn at positiong;.
Let the momentum of thigh particle bep;. The total force acting and the total linear

momentum are N N
F= ZlFi and P= lei,
i= i=

respectively. Summing the equations of motibn= p; (Newton’s second law), for
all the particles immediately leads to

F=P.

To make this more useful, we divide up the fofgeon theith particle into the
external force plus the sum of all the internal forces duéoather particles:

Fi = FieXt—I— z Fij.
J#

Here, Fjj is the force on théth particle due to thgth. The payoff for using this
decomposition is that the internal forces are related irsgai Newton’s third law,

Fij = —Fii,

and therefore,
N

N N
F=2 (Fee Y Fi) = 2 FP+ mzzl Fij.

7 =
i7]

The first term on the RHS is simply the total external fofe®!, and the second term
vanishes because the internal forces cancel in pairs. Taehd up with the result:

F=p]|. (1.1)



1 Motion of Systems of Particles
¢ The total external force is equal to the rate of change of dked tinear mo-
mentum of the system.
e We used Newton'’s third law to cancel the internal forces iinga

e If the external force vanisheE&* = 0, thenP = 0, soP is constant and we
can state:

The linear momentum of a system subject to
no net external force is conserved.

1.1.1 Centre of Mass
Define the centre of masi, by,
N . N
R= _lez\nlmrl o Zlmrh
Yo M£

whereM =y my is the total mass.
If the individual masses are constant, then the velocityhefdentre of mass is
found from,

N
MR = Zlmh =P.
i:
Furthermore, we just saw above tif&t'= dP/dt. So we have the following results:

and [F=MR]. (1.2)

e |In theabsenc®f a net external force, the centre of mass moves with constan
velocity. This says (once again) that:

The linear momentum of a system subject to
no net external force is conserved.

o |f the net external force is non-zero, the centre of mass magdaf the total
mass of the system were there, acted on by the total extenrca. f

It is often useful to look at the system of particles with piasis measured rela-
tive to the centre of mass. g is the location of théth particle with respect to the
centre of mass then (see figure 1.1),

=Rip] a2

1.1.2 Kinetic Energy of a System of Particles

Let’s look at the total kinetic energy of the system using the decomposition in
equation (1.3).

T N } I-,Z B N } R 5

_NlRZN - N1 o,
= 2 g meR 3 omet
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origin *

Figure 1.1 Particle positions measured with respect to the Centre sEMa

The second term on the RHS vanishes sificap; = 0 andy mp, = 0 by the defi-
nition of the centre of mass. This leaves,

T—}MR2—|— S }mpz
2 giz N

which we write as,

1 .
T= E|\/|F<2+TCM . (1.4)

The total kinetic energy has one term from the motion of thrgresof mass and
a second term from the kinetic energy of motion with respethé centre of mass.
Since patrticle velocities are different when measured fierdint inertial reference
frames, the kinetic energy will in general be different iffetient frames. However,
Tewm, the kinetic energy with respect to the center of mass is#imeein all inertial
frames and is an “internal” kinetic energy of the system @bm of Tcy and the
potential energy due to the internal interactions is theltioiternal energyJ, as
used in thermodynamics). To prove this, note that a Galilesrsformation from a
frameSto a frameS moving at velocity with respect t@Schanges particle positions
by:

ri—ri=rj—Vt.

The centre of mass transforms similarly,

R=ZMN g ZMA_ gy,
2m 2m

so that positions and velocities with respect to the cerftreass arainchanged

pl’ = r-R = (ri—-vt)—-(R-vt) = r—-R = Pi

p = f-R = (i-v)-(R-v) = ii-R = p,

The decomposition of the kinetic energy in equation (1.4)lmauseful in prob-
lem solving. For example, if a ball rolls down a ramp, you capress the kinetic
energy as a sum of one term coming from the linear motion afé¢imére of mass plus
another term for the rotational motion about the centre a$sr(¢he kinetic energy
of rotational motion is discussed further later in the nptes

System of Two Particles Now apply the kinetic energy expression in equa-
tion (1.4) to a system of two particles. Write the particléoegties asu; = r; and
Uy =T, So that: ' '

uu=R+p; and u;=R+p,.
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Figure 1.2 Motion of a rocket. We consider the rocket at two closely sgaastants of
time,t andt + ot.

Subtracting these two equations giwgs- u; = p, — p,, While the centre of mass
condition states thatyp, +myp, = 0. We can thus solve f@, andp,:

. mp(up—Up) . —mg(u;—Up)

pr=—T7" P
m+ Ny m+ Ny

Substituting these in the kinetic energy expression gives,

1 . 1 m
T= E(ml-l-mz)Rz—l-—

The quantitymmy/(m + mp) appearing here is called theduced massWe will
meet it again (briefly) in chapter 3 on Kepler's laws.

1.1.3 Examples

Rocket Motion ~ We can use our results for the motion of a system of particles
to describe so-called “variable mass” problems, where thgsnof the (part of) the
system we are interested in changes with time. A prototypiample is the motion

of a rocket in deep space. The rocket burns fuel and ejectsotinbustion products

at high speed (relative to the rocket), thereby propelliagli forward. To describe
this quantitatively, we refer to the diagram in figure 1.2 pnaceed as follows.

We considerthe rocket at two closely spaced instants of thhémet the rocket
and its remaining fuel have massand velocityv. In a short additional intervait
the rocket’'s mass changesro+ dm as it burns a massdm of fuel (note thadm
is negativesince the rocket uses up fuel for propulsion) and the roskeglocity
changes to + dv. The exhaust gases are ejected with veloe€itywith respect to
the rocket, which is velocity — u with respect to an external observer. Hence, at
timet 4 ot we have a rocket of mass+ dm moving with velocityv + dv together
with a mass-dm of gas with velocity — u.

If the rocket is in deep space, far from any stars or plank&sgtis no gravita-
tional force or other external force on the system, so itsalvBnear momentum is
conserved. Therefore, we may equate the linear momentune gistem at timets
andt + ot,

mv = (m+0m)(v+dv) —dm(v — u).

Cancelling terms we find,
udm-+ mov + omdv = 0.

We take the [imidt — 0, so that thé@mdv term, which is second order in infinitesi-
mal quantities, drops out, leaving:
dm

u— = —dv.
m



1.2 Angular Motion

If the rocket initially has velocity; when its mass isy, and ends up with velocity
v when its mass im;, we integrate this equation to find:

Vi =Vj+uln (%) . (1.5)

f

The fact that the increase in the rocket’s speed dependstlogécally on the ratio
of initial and final masses is the reason why rockets are dlemdgely made up of
fuel when they are launched (the functiorxlgrowsvery slowly with x). It also
explains why multi-stage rockets are advantageous: ongégiee burnt up some
fuel, you don’t want to carry around the structure that cowd it, since this will
reduce the ration; /m; for the subsequent motion.

Rope Falling Onto a Table  Here we’ll consider a system where an external
force acts. A flexible rope with mass per unit lengtls suspended just above a
table. The rope is released from rest. Find the force on thle tahen a lengtix of
the rope has fallen to the table.

Our system here is the rope. The external forces in the atdicection are the
weight of the ropepag, acting downwards plus an upward normal foFcexerted
on the rope by the tabletop. We want to deterntine

The rope falls freely onto the table, so its downward acegilen isg. If we let
v = X, this means that = g andv? = 2gx.

Suppose that a leng#of the rope has reached the table top after timmehen the
speed of the falling section is A short timedt later, the length of rope on the table
is X+ 0x and the speed of the falling sectiomnvig- dv. The downward components
of the system’s total momentum at timeandt + &t are therefore:

pt) = p@-xVv,
p(t+dt) = p(a—x—ox)(v+ov).

Working to first order in small quantities,
Op = p(t+dt) — p(t) = p(a— x)dv— pvdX.
Taking the limitdt — 0, we find that the rate of change of momentum is,

d L
d—? = p(a—x)vV—pvx = p(a—x)g— 2pxg.

Therefore, equating the external force to the rate of chahgeomentum gives,
pag—F = p(a—x)g—2pxg,
or finally,
F = 3pxg
1.2 Angular Motion

The angular equation of motion for each particle is

d
ri xF :a(rixpi).
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The total angular momentum of the system and the total toaqtieg are:

N N

L= i;ri xpi  and T:i;ri X Fi

As before we split the total force on each particle into exdéand internal parts.
We then make a corresponding split in the total torque:

N . N
T = I'iXFieX—I—ZlI’iX Fij
= .[ext_l_.[int‘

Recall that in the linear case, we were able to cancel thenialtéorces in pairs,
because they satisfied Newton’s third law. What is the cpmeding result here? In
other words, when can we ignoré!? To answer this, decompos® as follows,

T = ryx(Fio+Fis+-+Fw)
+r2x (Far+Fag+---+Fon) +--
= (ri—r2) x F12+ (other pairs.

We have used Newton’s third law to obtain the last line.

Now, if the internal forces act along the lines joining thetjate pairs, then all
the termgr; — rj) x Fjj vanish and™ = 0. Thust™ = 0 for centralinternal forces.
Examples are gravity and the Coulomb force.

With this proviso we obtain the result,

N X d N
rix Ft=—$rixp
2N g
which is rewritten as,
= |

¢ This result applies when we use coordinates in an ineraaié (one in which
Newton’s laws apply).

o Note that we used both Newton’s third law and the conditiai the forces
between particles were central in order to reach our result.

1.2.1 Angular Motion About the Centre of Mass

We will now see that taking moments about the centre of masslehds to a simple
result. To do this, look at the total angular momentum ushegdentre of mass
coordinates:

N N

L = _Zirixmfi = _;(R-I-Pi)Xm(R‘l'pi)

1=
— iinmR—l—iinmbi—l—iipi me+§ipi «mp..

The second and third terms on the RHS vanish sjhoep; = 0 andy mp; = 0 by
the definition of the centre of mass. This leaves,

. N .
L=RxMR+ leixmpi,
i=
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which we write as,

L=RxMR+Lcwm]| (1.6)

The total angular momentum therefore has two terms, whiohbesinterpreted as
follows. The first arises from the motion of the centre of malssut the origin of
coordinates: this is called tlebital angular momentum and takes different values
in different inertial frames. The second terby)y, arises from the angular motion
about (relative to) the centre of mass (think of the exampla epinning planet
orbiting the Sun): this is theamein all inertial frames and is amtrinsic or spin
angular momentum (the proof of this is like the one givenTtgy, the kinetic energy
relative to the CM, below equation (1.4) on page 3).

Finally, we take the time derivative of the last equation ibtam,

L L )
diev _ OL o MR = 1o_Ryped
dt dt
N N

= eri x FPX— ZLR x FfX
i= i=

N

= Zl(ri —~R) x Ff*

1=
N

= ZlPiXFiext = Tw
i:

So we've found two results we can use when considering tergpelied to a
system:

™= and [t =Lcm|. (1.7)

e These two equations say you can take moments either aboatitie of an
inertial frame, or about the centre of mass (even if the eemitmass is itself
accelerating).

e Furthermore, in either case:

The angular momentum of a system subject to
no external torque is constant.

1.3 Commentary

In deriving the general results above we assumed the wabiiNlewton'’s third law,
so that we could cancel internal forces in pairs. We alsorasduhat the forces were
central so that we could cancel internal torques in paire d$sumption of central
internal forces is very strong and we know of examples, ss¢haelectromagnetic
forces between moving particles, which ae central.

All we actually require is the validity of the results in egjoas (1.1) and (1.7).
It is perhaps better to regard them as basic assumptionsewhsisfication is that
their consequences agree with experiment.

For the puzzle associated with the electromagnetic foraagioned above, the
resolution is that you have to ascribe energy, momentum agdlar momentum to
the electromagnetic field itself.





