
2
Rotational Motion of Rigid
Bodies

2.1 Rotations and Angular Velocity

A rotation R(n̂;θ) is specified by an axis of rotation, defined by a unit vectorn̂
(2 parameters) and an angle of rotationθ (one parameter). Since you have a direction
and a magnitude, you might suspect that rotations could be represented in some way
by vectors. However, rotations through finite angles arenotvectors, because they do
not commute when you “add” or combine them by performing different rotations in
succession. This is illustrated in figure 2.1

Infinitesimalrotationsdo commute when you combine them, however. To see
this, consider a vectorA which is rotated through an infinitesimal angledφ about
an axisn̂, as shown in figure 2.2. The change,dA in A under this rotation is a
tiny vector from the tip ofA to the tip ofA+dA. The figure illustrates thatdA is
perpendicular to bothA and n̂. Moreover, ifA makes an angleθ with the axisn̂,
then, in magnitude,jdAj= Asinθdφ, so that as a vector equation,

dA = n̂�Adφ:
This has the right direction and magnitude.

If you perform a second infinitesimal rotation, then the change will be some
newdA0 say. The total change inA is thendA+dA0, but since addition of vectors

BF
F F B

F

B B

rotate 90 degrees about z axis then 180 degrees about x axis

rotate 180 degrees about x axis then 90 degrees about z axis

Figure 2.1 Finite rotations do not commute. A sheet of paper has the letter “F” on the front
and “B” on the back (shown light grey in the figure). Doing two finite rotations in different
orders produces a different final result.
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Figure 2.2 A vector is rotated through an infinitesimal angle about an axis.

commutes, this is the same asdA0+dA. So, infinitesimal rotationsdo combine as
vectors.

Now think of A as denoting a position vector, rotating around the axis with
angular velocitydφ=dt = φ̇, with the length ofA fixed. This describes a particle
rotating in a circle about the axis. The velocity of the particle is,

v = dA
dt

= n̂�A φ̇:
We can define the vectorangular velocity,

ωωω = φ̇ n̂;
and then,

dA
dt

= ωωω�A : (2.1)

It’s not necessary to think ofA as a position vector, so this result describes the rate
of change of any rotating vector of fixed length.

2.2 Moment of Inertia

We will consider the rotational motion ofrigid bodies, where the relative positions of
all the particles in the system are fixed. Specifying how one point in the body moves
around an axis is then sufficient to specify how the whole bodymoves. The idea of a
rigid body is clearly an idealisation. Real bodies are not rigid and will deform, how-
ever slightly, when subject to loads. Their constituents are also subject to random
thermal motion. Nonetheless there are many situations where the deformation and
any thermal motion can be ignored.
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Figure 2.3 Rigid body rotation about a fixed axis.

The general motion of a rigid body with a moving rotation axisis complicated,
so we will specialise to afixedaxis at first. We can extend our analysis tolaminar
motion, where the axis can move, without changing its direction: an example is
given by a cylinder rolling in a straight line down an inclined plane. We will later
discuss precession, where the axis itself rotates.

For a rigid body rotating about a fixed axis, what property controls the angular
acceleration produced by an external torque? The property will be the rotational
analogue of mass (which tells you the linear acceleration produced by a given force).
It is known as themoment of inertia, sometimes abbreviated (in these notes anyway)
asMoI.

To find out how to define the MoI, look at the kinetic energy of rotation. Let
ωωω = ωn̂, so thatn̂ specifies the rotation axis. Letmi be the mass of theith particle in
the body and letRi be the perpendicular distance of theith particle from the rotation
axis. The geometry is illustrated in figure 2.3. Since the body is rigid, Ri is a fixed
distance for eachi andω is the same for all particles in the body. The kinetic energy
is

T = ∑
i

1
2

miv
2
i = ∑

i

1
2

miR
2
i ω2 = 1

2
Iω2;

where the last equality allows us to define the MoI about the given axis, according
to,

I �∑
i

miR
2
i :

The contribution of an element of mass toI grows quadratically with its distance
from the rotation axis. Note the analogy between1

2mv2 for the kinetic energy of a
particle moving with speedv and1

2Iω2 for the kinetic energy of a body with moment
of inertiaI rotating with angular speedω.

If the position vectorri of theith particle is measured from a point on the rotation
axis, thenvi = ωωω�ri andvi = jωωω�ri j= Riω. This is an application of the result in
equation (2.1) for the rate of change of a rotating vector.

The moment of inertia is one measure of the mass distributionof an object. Other
characteristics of the mass distribution we have already met are the total mass and
the location of the centre of mass.
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For a continuous mass distribution, simply replace the sumsover discrete parti-
cles with integrals over the mass distribution,

I = Z
body

R2dm= Z
body

R2ρd3r :
Here, dm= ρd3r is a mass element,ρ is the mass density andd3r is a volume
element.

It is sometimes convenient to use theradius of gyration, k, defined by

I �Mk2 :
A single particle of mass equal to the total mass of the body atdistancek from the
rotation axis will have the same moment of inertia as the body.

Now look at the componentLn in the direction of the rotation axis of the (vector)
angular momentum about some point on the axis (see figure 2.3). This is obtained
by summing all the contributions of momenta perpendicular to the axis times the
perpendicular separation from the axis,

Ln = ∑
i

Ri(miRiω) = Iω :
The subscriptn labels the rotation axis. Note that the angular momentum of the ith
particle isLi = ri �mivi, and the component of this in the direction ofn̂ is,

n̂ � (ri �mivi) = n̂ � (ri�mi(ωωω�ri)) = miR
2
i ω;

which is just what appears in the sum givingLn.
If n̂ is a symmetry axis thenLn is the only non-zero component of the total angu-

lar momentumL. However, in general,L need not lie along the axis, or equivalently,
L need not be parallel toωωω.

Taking components of the angular equation of motion,τττ = dL=dt along the axis
gives,

τn = dLn

dt
= Iω̇ = I φ̈;

if φ measures the angle through which the body has rotated from some reference
position.

2.3 Two Theorems on Moments of Inertia

2.3.1 Parallel Axis Theorem

ICM = Moment of Inertia (MoI) about axis through centre of mass (CM)

I = MoI about parallel axis at distanced from axis through CM

The parallel axis theorem states:

I = ICM +Md2 ;
whereM is the total mass. To prove this result, choose coordinates with thez-axis
along the direction of the two parallel axes, as shown in figure 2.4. Then,

I = N

∑
i=1

mi(x2
i +y2

i ):
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Figure 2.4 Parallel axis theorem. In the right hand figure, we are looking vertically down
in thez direction.
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Figure 2.5 Perpendicular axis theorem for thin flat plates.

We can also choose thex-direction to run from the new axis to the CM axis. Then,

xi = d+ρix and yi = ρiy

whereρix andρiy are coordinates with respect to the CM. The expression forI be-
comes:

I = N

∑
i=1

mi((d+ρix)2+ρ2
iy) = N

∑
i=1

mi(ρ2
ix +ρ2

iy +d2+2dρix):
The last term above contains∑miρix which vanishes by the definition of the CM.
The remaining terms giveICM andMd2 and the result is proved.

2.3.2 Perpendicular Axis Theorem

This applies for thin flat plates of arbitrary shapes, which we take to lie in thex-y
plane, as shown in figure 2.5. LetIx, Iy andIz be the MoI about thex, y andz axes
respectively. The perpendicular axis theorem states:

Iz = Ix+ Iy :
The proof of this is very quick. Just observe that since we have a thin flat plate, then

Ix = N

∑
i=1

miy
2
i and Iy = N

∑
i=1

mix
2
i :

But

Iz = N

∑
i=1

mi(x2
i +y2

i );
and the result is immediate.

In both these results we have assumed discrete distributions of point masses. For
continuousmass distributions,simply replace the sums by integrations. For example,

Iz = N

∑
i=1

mi(x2
i +y2

i )�! Z (x2+y2)dm:
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Figure 2.6 Wheel rolling down a slope.

2.4 Examples

Moment of Inertia of a Thin Rod Find the moment of inertia of a uniform thin
rod of length 2a about an axis perpendicular to the rod through its centre of mass.
Also find the moment of inertia about a parallel axis through the end of the rod.

Let ρ be the mass per unit length of the rod and letx measure position along
the rod starting from the centre of mass (so�a� x � a). For an element of the
rod of lengthdx the mass isρdx and the moment of inertia of the element isρx2dx.
Therefore the total moment of inertia is given by the integral:

ICM = Z a�a
ρx2dx= 2

3
ρa3:

The total mass ism= 2ρa, and therefore,

ICM = 1
3

ma2:
Applying the parallel axis theorem, the moment of inertia about one end of the rod
is,

Iend= ICM +ma2 = 4
3

ma2:
Spoked Wheel A wheel of radiusa comprises a thin rim of massM andn spokes,
each of massm, which may be considered as thin rods terminating at the centre of
the wheel. If the wheel rolls without slipping down a plane inclined at angleθ to the
horizontal, as depicted in figure 2.6, what is the linear acceleration of its centre of
mass?

We will apply the angular equation of motion about the centreof mass (see
equation (1.7) on page 7), and the linear equation of motion (see equation (1.2)
on page 2) in a direction parallel to the sloping plane. If theangular velocity of the
wheel isω, then the no-slip conditionsays that its speed isv= aω. Choose directions
so thatω andv are both positive when the wheel rolls downhill.

The angular equation of motion applied to the wheel about itscentre of mass
saysτext

CM = ICM ω̇. The external torque comes from the frictional forceF acting up
the sloping plane at the point of contact with the wheel. Using the result above for
the MoI of a rod (remembering that the rod length is nowa instead of 2a), we find,

ICM = Ma2+ n
3

ma2:
The angular equation of motion then gives,

Fa= (Ma2+ n
3

ma2)ω̇:
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The component of the linear equation of motion in a directiondown the plane gives,�F +(M+nm)gsinθ = (M+nm)aω̇:
We now eliminateF and solve foraω̇, which gives the linear acceleration as,

aω̇ = 3(M+nm)gsinθ
6M+4nm

:
Alternatively, since the normal reaction (N in figure 2.6) and frictional forces

on the wheel do no work, we can apply the conservation of the kinetic plus (grav-
itational) potential energy. Applying our result in equation (1.4) on page 3 for the
kinetic energy of a system, we find:

1
2
(M+nm)v2+ 1

2
ICMω2� (M+nm)gxsinθ = const;

wherex is the distance moved starting from some reference point. Using v= ẋ= aω
and differentiating with respect to time gives

1
3
(6M+4nm)ẋẍ= (M+nm)gsinθ ẋ;

which leads to the same result as before for the accelerationaω̇ = ẍ.

2.5 Precession

Spinning bodies tend toprecessunder the action of a gravitational torque. We’ll
work out the steady precession rate for a spinning top. Figure 2.7 shows a top sup-
ported at a fixed pivot point. We will apply the angular equation of motionτττ= dL=dt
about the pivot. As drawn, the torque about the pivot due to the weight of the top
points into the paper. Hence, the angular momentumL of the top must change by
moving into the paper. If the top is spinning very fast about its axis, thenL is, to a
very good approximation, aligned with the top’s axis. So, the top will tend to turn
bodily, orprecessaround a vertical axis. It may help to think of the torqueτττ pushing
the tip ofL around.

We can calculate the precession frequency quite easily. Assume thatL is large so
that the total angular momentum of the top is given entirely by the spin, and ignore
any contribution due to the slow precession of the top about the vertical axis. The
torque is given by,

τττ = r�F;
wherer is the vector from the pivot to the top’s centre of mass andF = mg is the
top’s weight. In magnitude,

τ = mgrsinα;
where the top’s axis makes an angleα with the vertical.

If the top precesses through an infinitesimal angledφ about the vertical axis, then
the magnitude of the change inL is,

dL= Ldφsinα:
If φ̇ = ωp is the precession angular velocity, then,

dL
dt

= Lωpsinα:
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Figure 2.7 A spinning top will precess under gravity.

Applying the equation of motion, taking the magnitude of both sides, gives:

mgrsinα = Lωpsinα:
The sinα terms cancel and the final answer comes out independent of theangle
which the top makes with the vertical. The precession angular velocity is given by,

ωp = mgr
L

:
A full treatment of the motion of a top is complicated. Steadyprecession is a

special motion: in general the top tends to nod up and down, ornutate, as it pre-
cesses.

2.6 Gyroscopic Navigation

A gyrocompass is a spinning top mounted in a frame so that its axis is constrained
to be horizontal with respect to the Earth, see figure 2.8. As the Earth turns, the axis
turns with it, causing the end of the axis labelledA in the figure to be raised upwards
and the endB to be pushed down (as seen from a fixed frame not attached to the
Earth). This means that there is a torque on the gyroscope which is perpendicular
to the spin angular momentumL and points between the North and West when the
compass is oriented as in the figure.

From the angular equation of motion,τττ = dL=dt, this torque will tend to pushL
towards the North. IfL points between North and West, the torque again tries to line
up L with the North-South axis. The gyrocompass will thus tend tooscillate with
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Figure 2.8 A gyrocompass.

its spin direction oscillating about the N-S axis. If you apply some damping, then it
will tend to settle down with its spin along the N-S line.

2.7 Inertia Tensor �
Now let’s look at the moment of inertia in more detail. So far when we’ve consid-
ered the MoI for a body rotating around a fixed axis, we’ve always looked at the
componentLn of the angular momentumL along the direction of the axiŝn. Now
let’s look atall the components ofL. From the definition of angular momentum we
have,

L = N

∑
i=1

ri �pi = N

∑
i=1

ri �mi(ωωω�ri) = N

∑
i=1

mi(ri�ri ωωω�ωωω�ri ri);
where we have usedpi = mivi = miωωω� ri andωωω = ωn̂. We also applied a standard
result for the vector triple product,ri � (ωωω� ri) = ri�riωωω�ωωω�riri . Rewrite this as a
matrix equation giving the components ofL in terms of the components ofωωω (the
summations run overi = 1; : : : ;N):0@Lx

Ly

Lz

1A = 0@∑mi(y2
i +z2

i ) �∑mixiyi �∑mixizi�∑miyixi ∑mi(z2
i +x2

i ) �∑miyizi�∑mizixi �∑miziyi ∑mi(x2
i +y2

i )1A0@ωx

ωy

ωz

1A= 0@ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

1A0@ωx

ωy

ωz

1A :
This is given more succinctly as,

L = Iωωω;
whereI is the matrix, known as theinertia tensorwhich acts onωωω to give L. Re-
membering thatωωω = ω n̂, our old results are recovered from,

T = 1
2

n̂TI n̂ω2 and Ln = n̂TI n̂ω;



18 2 Rotational Motion of Rigid Bodies

so we can define
In� n̂TI n̂

as the moment of inertia about the axisn̂. This corresponds to what we calledI
earlier, when we didn’t make explicit reference to the rotation axis we were using.
Here we are thinking of a matrix notation, son̂T means the transpose ofn̂, which
gives a row vector.

The resultL = Iωωω shows quite clearly that although the angular momentum
depends linearly onωωω it doesnothave to be parallel toωωω. One important place where
this matters is wheel balancing on cars. A wheel is unbalanced precisely whenL and
ωωω are not parallel. Then, as the wheel rotates withωωω fixed, L describes a cone so
dL=dt 6= 0. Therefore a torque must be applied and you feel “wheel wobble.” This is
corrected by adding small masses to the wheel rim to adjustI to makeL andωωω line
up. In general, sinceI is a symmetric matrix, it can be diagonalised. This means it is
always possible to choose a set of axes in the body for whichI has non zero elements
only along the diagonal. If you rotate the body around one of theseprincipal axes,
L andωωω will be parallel.

2.7.1 Free Rotation of a Rigid Body — Geometric Description �
Consider the rotational motion of a rigid body moving freelyunder no forces (or, a
rigid body falling freely in a uniform gravitational field sothat there are no torques
about the CM; or, a rigid body freely pivoted at the CM).

If there are no torques acting, the total angular momentum,L, must remain con-
stant. It is convenient to choose axes fixed in the body, aligned with its principal
axes of inertia. These body axes are themselves rotating, soin these coordinates the
components ofL along the axes may change (see chapter 4 on rotating coordinate
systems). However,jLj is still fixed, so thatL�L = L2 = const. Expressed in the
body coordinates, this reads:

L2 = I2
1ω2

1+ I2
2ω2

2+ I2
3ω2

3:
Furthermore, since there is no torque, the rotational kinetic energy is fixed,T =
const. Expressed in the body coordinates, this second conservation condition reads:

2T = I1ω2
1+ I2ω2

2+ I3ω2
3:

The components of the angular velocity simultaneously satisfy two different equa-
tions. These equations specify two ellipsoids andωωω must lie on the line given by
their intersection.

Suppose that all three principal moments of inertia are unequal, as is the case for,
say, a book or a tennis racket. We’ll takeI1 < I2 < I3. Now, start spinning the object
with angular velocity of magnitudeω aligned along theI1 axis. Angular momentum
conservation says that the maximum magnitude of the component of ωωω along the
I2 axis in the subsequent motion isωI1=I2, while kinetic energy conservation says
the maximum magnitude of this component isω

p
I1=I2. SinceI1 < I2, we find that

the maximum component allowed by kinetic energy conservation is bigger, so that
the kinetic energy ellipsoid liesoutsidethe angular momentum ellipsoid along the
I2 axis. Likewise, sinceI1 < I3, the kinetic energy ellipsoid liesoutsidethe angular
momentum ellipsoid in theI3 direction. Therefore, the intersection of the two ellip-
soids comprises just two points, along the positive and negative I1 directions. This
is enough to tell you that rotation about theI1 axis is stable — see figure 2.9(a).
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Figure 2.9 Free rotation of a rigid body. The diagrams show the (first octants of the)
kinetic energy and angular momentum ellipsoids for the freerotation of a rigid body with
all three principal moments of inertia different,I1 < I2 < I3. In (a) the rotation is stable with
ωωω pointing along theI1 direction. In (b) the two ellipsoids intersect in a line, showing that
rotation about theI2 axis is unstable. In (c) the rotation is stable withωωω pointing in theI3
direction.

–5

0

5 –4

–2

0

2

4
–2

0

2

–5

0

5
ω1

ω2

ω3

Figure 2.10 Curves showing the time variation of angular velocity for a freely rotating
object. The curves all lie on the ellipsoid of constant kinetic energy, and each one is given
by the intersection of this ellipsoid with a similar ellipsoid of constant (magnitude of) angular
momentum. On the left the full curves are shown, while on the right, parts of the curves on
the “back” of the kinetic energy ellipsoid are hidden. The closed loops around theI1 andI3
axes show that the rotation is stable about these two axes.

A similar argument holds if you start with the angular velocity lined up along
the I3 axis, although in this case the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid, with the intersection only at twopoints along the positive
and negativeI3 axes. Thus, rotation about the axis with the largest moment of inertia
is also stable — see figure 2.9(c).

The final case we consider is where the initial angular velocity is aligned along
the I2 axis. Now, sinceI2 > I1, the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid in theI1 direction, but, sinceI2 < I3, the angular momentum
ellipsoid lies inside the kinetic energy ellipsoid in theI3 direction. This means that
there is a whole line of points where the two ellipsoids intersect — see figure 2.9(b).
In turn, this tells you that rotation about the axis with intermediate moment of inertia
is unstable: any small misalignment can be amplified and the object will be observed
to “tumble” as it spins. It is easy to demonstrate this for yourself by throwing a book
in the air, spinning it about each of its three principal axesin turn.

These three cases are illustrated in figure 2.9. Figure 2.10 shows the time varia-
tion of ω for the freely rotating body: each continuous curve shows the time variation
of the components ofω. The curves all lie on the surface of the ellipsoid of constant
kinetic energy, and each curve is given by the intersection of this ellipsoid with an
ellipsoid of constant angular momentum.




