Rotational Motion of Rigid
Bodies

2.1 Rotations and Angular Velocity

A rotation R(N, 0) is specified by an axis of rotation, defined by a unit vector
(2 parameters) and an angle of rotatébf@ne parameter). Since you have a direction
and a magnitude, you might suspect that rotations couldgresented in some way
by vectors. However, rotations through finite anglesrerevectors, because they do
not commute when you “add” or combine them by performingedéht rotations in
succession. This is illustrated in figure 2.1

Infinitesimalrotationsdo commute when you combine them, however. To see
this, consider a vectoh which is rotated through an infinitesimal angl@ about
an axisn, as shown in figure 2.2. The chang in A under this rotation is a
tiny vector from the tip ofA to the tip of A +dA. The figure illustrates thatA is
perpendicular to both andn. Moreover, ifA makes an anglé with the axish,
then, in magnitudgdA| = AsinBdg, so that as a vector equation,

dA = A x Ade.
This has the right direction and magnitude.

If you perform a second infinitesimal rotation, then the dewill be some
newdA’ say. The total change i is thendA + dA’, but since addition of vectors

Fl P [w] ¢ [

rotate 90 degrees about z axis then 180 degrees about x axis

F| ¢ (9 | [@

rotate 180 degrees about x axis then 90 degrees about z axis

Figure 2.1 Finite rotations do not commute. A sheet of paper has therl8t on the front
and “B” on the back (shown light grey in the figure). Doing twait rotations in different
orders produces a different final result.
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Figure 2.2 A vector is rotated through an infinitesimal angle about &n.ax

commutes, this is the same @&’ + dA. So, infinitesimal rotationdo combine as
vectors.

Now think of A as denoting a position vector, rotating around the axis with
angular velocitydg/dt = @, with the length ofA fixed. This describes a particle
rotating in a circle about the axis. The velocity of the petis,

dA .
v=—=nxAqQ.
gt — " Ae
We can define the vectangular velocity

w= N,
and then,
dA
i WxA | (2.2)

It's not necessary to think gk as a position vector, so this result describes the rate
of change of any rotating vector of fixed length.

2.2 Moment of Inertia

We will consider the rotational motion ofid bodies where the relative positions of
all the particles in the system are fixed. Specifying how onetpoitne body moves
around an axis is then sufficient to specify how the whole bodyes. The idea of a
rigid body is clearly an idealisation. Real bodies are rgitlrand will deform, how-
ever slightly, when subject to loads. Their constituenésaso subject to random
thermal motion. Nonetheless there are many situationsener deformation and
any thermal motion can be ignored.
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Figure 2.3 Rigid body rotation about a fixed axis.

The general motion of a rigid body with a moving rotation asisomplicated,
so we will specialise to &ixedaxis at first. We can extend our analysidaminar
motion, where the axis can move, without changing its dioectan example is
given by a cylinder rolling in a straight line down an inclthplane. We will later
discuss precession, where the axis itself rotates.

For a rigid body rotating about a fixed axis, what propertytoas the angular
acceleration produced by an external torque? The propaliye&vthe rotational
analogue of mass (which tells you the linear acceleratiodyeed by a given force).
Itis known as thenoment of inertiassometimes abbreviated (in these notes anyway)
asMol.

To find out how to define the Mol, look at the kinetic energy ofatmn. Let
W= wA, so thath specifies the rotation axis. Let be the mass of thi¢h particle in
the body and leR; be the perpendicular distance of iltke particle from the rotation
axis. The geometry is illustrated in figure 2.3. Since theybisdigid, R, is a fixed
distance for eachandw is the same for all particles in the body. The kinetic energy

is
[ = EI vazI = EI ZmRZw = 2Iw,

where the last equality allows us to define the Mol about thergaxis, according
to,

IEZmRiZ.

The contribution of an element of massltgrows quadratically with its distance
from the rotation axis. Note the analogy betw@'n\iZ for the kinetic energy of a
particle moving with speedand%l «? for the kinetic energy of a body with moment
of inertial rotating with angular speed.

If the position vector; of theith particle is measured from a point on the rotation
axis, thenv; = wx rj andy; = |wx ri| = Rw. This is an application of the result in
equation (2.1) for the rate of change of a rotating vector.

The moment of inertia is one measure of the mass distribaofian object. Other
characteristics of the mass distribution we have alreadyameethe total mass and
the location of the centre of mass.
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For a continuous mass distribution, simply replace the sonas discrete parti-
cles with integrals over the mass distribution,

| = dem:/b Repdr |.

body ody

Here,dm= pd® is a mass elemenp is the mass density ardfr is a volume
element.
It is sometimes convenient to use tiaelius of gyrationk, defined by

1= mi)

A single particle of mass equal to the total mass of the bodlsidincek from the
rotation axis will have the same moment of inertia as the body

Now look at the component, in the direction of the rotation axis of the (vector)
angular momentum about some point on the axis (see figure Pt#3 is obtained
by summing all the contributions of momenta perpendicuaihe axis times the
perpendicular separation from the axis,

Ly = ZRi(mRiw) =lw]|.

The subscriph labels the rotation axis. Note that the angular momenturheifth
particle isL; = r; x myv;j, and the component of this in the directionfois,

A-(rixmvi) =A-(r x mwxr;)) = mR%w,

which is just what appears in the sum giving
If A is a symmetry axis thel, is the only non-zero component of the total angu-
lar momentunk. However, in general, need not lie along the axis, or equivalently,
L need not be parallel to.
Taking components of the angular equation of motios,dL /dt along the axis
gives,
Th= dbn _ lo=1¢@
dt ’
if @ measures the angle through which the body has rotated frome seference
position.

2.3 Two Theorems on Moments of Inertia

2.3.1 Parallel Axis Theorem

Ilcm = Moment of Inertia (Mol) about axis through centre of mass jCM
I = Mol about parallel axis at distancsfrom axis through CM

The parallel axis theorem states:

| = lom+Md? |,

whereM is the total mass. To prove this result, choose coordinaiistiae z-axis
along the direction of the two parallel axes, as shown in &gu4. Then,

N
| = _;m(ﬁﬂ?)-
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CM axis

new axis CM axis

[e—d

Figure 2.4 Parallel axis theorem. In the right hand figure, we are logkiertically down
in thez direction.

Figure 2.5 Perpendicular axis theorem for thin flat plates.

We can also choose thxedirection to run from the new axis to the CM axis. Then,
X =d+px and y =py

wherepix andpjy are coordinates with respect to the CM. The expressioh e
comes:

N N
| = Zim((d+pix)2+p§) = Zim(p§+p?y+d2+2dpix).
i= i=

The last term above contairgsmipix which vanishes by the definition of the CM.
The remaining terms giviey andMd? and the result is proved.

2.3.2 Perpendicular Axis Theorem

This applies for thin flat plates of arbitrary shapes, whightake to lie in the«y
plane, as shown in figure 2.5. Lkt Iy andl, be the Mol about the, y andz axes
respectively. The perpendicular axis theorem states:

IZ: IX—I_Iy .
The proof of this is very quick. Just observe that since weslzathin flat plate, then
N 2 N )
k=Y my- and Iy=) mx".
Sy A b=
But \
=3 mO¢+y),
T

and the result is immediate.
In both these results we have assumed discrete distritaigroint masses. For
continuous mass distributions, simply replace the sumstiegrations. For example,

Izz_im(&2+y?> —>/(x2+y2)dm
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(M+nm)g m

Figure 2.6 Wheel rolling down a slope.

2.4 Examples

Moment of Inertia of a Thin Rod Find the moment of inertia of a uniform thin
rod of length 2 about an axis perpendicular to the rod through its centreasfsm
Also find the moment of inertia about a parallel axis throughend of the rod.

Let p be the mass per unit length of the rod anddeheasure position along
the rod starting from the centre of mass (sa < x < a). For an element of the
rod of lengthdx the mass ipdx and the moment of inertia of the elemenpig dx.
Therefore the total moment of inertia is given by the integra

a 2
lem= [ pxldx= Zpa’.
_a 3

The total mass isn= 2pa, and therefore,

1
|CM:§m .

Applying the parallel axis theorem, the moment of inertiawattone end of the rod
is,

4

Spoked Wheel A wheel of radiusa comprises a thin rim of ma$4 andn spokes,
each of mass, which may be considered as thin rods terminating at theeerit
the wheel. If the wheel rolls without slipping down a planelined at anglé® to the
horizontal, as depicted in figure 2.6, what is the linear lBcagon of its centre of
mass?

We will apply the angular equation of motion about the cemtrenass (see
equation (1.7) on page 7), and the linear equation of motsee Equation (1.2)
on page 2) in a direction parallel to the sloping plane. Ifahgular velocity of the
wheel isw, then the no-slip condition says that its speedHsaw. Choose directions
so thatw andv are both positive when the wheel rolls downhill.

The angular equation of motion applied to the wheel aboutetgre of mass
sayst& = lcm @. The external torque comes from the frictional foFeacting up
the sloping plane at the point of contact with the wheel. gsire result above for
the Mol of a rod (remembering that the rod length is reoiustead of 2), we find,

n
lcm = Ma2—|— émaz
The angular equation of motion then gives,

Fa— (Maz—l—gmaz)d).
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The component of the linear equation of motion in a directiown the plane gives,
—F + (M4 nm)gsin@ = (M + nm)aw.

We now eliminaté= and solve foaw, which gives the linear acceleration as,

aio— 3(M+nm)jgsin®

6M+4nm

Alternatively, since the normal reactioN (n figure 2.6) and frictional forces
on the wheel do no work, we can apply the conservation of thetld plus (grav-
itational) potential energy. Applying our result in equati(1.4) on page 3 for the
kinetic energy of a system, we find:

1 1 .
5(M+ nmv? + EICMwZ — (M +nm)gxsin® = const

wherex is the distance moved starting from some reference poinhgys= x = aw
and differentiating with respect to time gives

1
3
which leads to the same result as before for the acceleradiea X.

(6M +4nm)xx = (M + nm)gsinBx,

2.5 Precession

Spinning bodies tend tprecessunder the action of a gravitational torque. We'll
work out the steady precession rate for a spinning top. Eiguf shows a top sup-
ported at a fixed pivot point. We will apply the angular eqoatf motiont = dL /dt
about the pivot. As drawn, the torque about the pivot due ¢owkight of the top
points into the paper. Hence, the angular momentuof the top must change by
moving into the paper. If the top is spinning very fast abtaibixis, therL is, to a
very good approximation, aligned with the top’s axis. Se tibp will tend to turn
bodily, orprecessaround a vertical axis. It may help to think of the torquaushing
the tip ofL around.

We can calculate the precession frequency quite easilyurAsshal is large so
that the total angular momentum of the top is given entirglytte spin, and ignore
any contribution due to the slow precession of the top abwtertical axis. The
torque is given by,

T=rxF,

wherer is the vector from the pivot to the top’s centre of mass knd mg is the
top’s weight. In magnitude,
T = mgrsina,

where the top’s axis makes an anglevith the vertical.
If the top precesses through an infinitesimal amgl@bout the vertical axis, then
the magnitude of the changelinis,

dL = Ldgsina.
If o= wy is the precession angular velocity, then,

%—L sina
dt_(‘)p '
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pivot

Figure 2.7 A spinning top will precess under gravity.

Applying the equation of motion, taking the magnitude oftbsides, gives:
mgrsina = Lwysina.

The simx terms cancel and the final answer comes out independent nifie
which the top makes with the vertical. The precession amgelacity is given by,

— magr
L

A full treatment of the motion of a top is complicated. Steguigcession is a
special motion: in general the top tends to nod up and downutate, as it pre-
cesses.

2.6 Gyroscopic Navigation

A gyrocompass is a spinning top mounted in a frame so thakitsig constrained
to be horizontal with respect to the Earth, see figure 2.8 haddarth turns, the axis
turns with it, causing the end of the axis labelkeh the figure to be raised upwards
and the end to be pushed down (as seen from a fixed frame not attached to the
Earth). This means that there is a torque on the gyroscopewitiperpendicular
to the spin angular momentuimand points between the North and West when the
compass is oriented as in the figure.

From the angular equation of motians= dL /dt, this torque will tend to push
towards the North. IL points between North and West, the torque again tries to line
up L with the North-South axis. The gyrocompass will thus tendgoillate with
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Figure 2.8 A gyrocompass.

its spin direction oscillating about the N-S axis. If you Bpgpome damping, then it
will tend to settle down with its spin along the N-S line.

2.7 Inertia Tensor *

Now let’s look at the moment of inertia in more detail. So fdrem we've consid-
ered the Mol for a body rotating around a fixed axis, we've gsvimoked at the
component., of the angular momentur along the direction of the axis. Now
let’s look atall the components df. From the definition of angular momentum we

have,
N N

N
L = eri X pi = Zri Xm(wxri) = Zlm(ri-riw—w-ri ri),
i= i= i=

where we have useal = myvi = mw x ri andw= wi. We also applied a standard
result for the vector triple produat; x (WX ri) =ri-riw— wrir;. Rewrite this as a
matrix equation giving the componentslofin terms of the components af (the
summations run oveér=1,... N):

Lx SmM(Y?+2) -3 mxy — Y Mz 0
Ly| = —ImyX  YM(Z+X)  —Ymyz Wy
L, — Y Mz —ymzy,  ImE+yd) /) \w,

Ixx Ixy Ixz Wy
= [l by bz oy
l2x lzy 1z OV
This is given more succinctly as,
L=l

wherel is the matrix, known as thimertia tensorwhich acts onw to giveL. Re-
membering thatd = wn, our old results are recovered from,

and Lhn=n

17
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so we can define
l,=ATIA

as the moment of inertia about the axis This corresponds to what we calléd
earlier, when we didn't make explicit reference to the riotabxis we were using.
Here we are thinking of a matrix notation, 86 means the transpose df which
gives a row vector.

The resultL = | @ shows quite clearly that although the angular momentum
depends linearly owit doesnothave to be parallel t. One important place where
this matters is wheel balancing on cars. A wheel is unbathpoecisely wheh and
w are not parallel. Then, as the wheel rotates witfixed, L describes a cone so
dL /dt # 0. Therefore a torque must be applied and you feel “wheel fedbbhis is
corrected by adding small masses to the wheel rim to atljiesinakel. andw line
up. In general, sinckis a symmetric matrix, it can be diagonalised. This mearss it
always possible to choose a set of axes in the body for wHhiels non zero elements
only along the diagonal. If you rotate the body around ondneséprincipal axes
L andw will be parallel.

2.7.1 Free Rotation of a Rigid Body — Geometric Description

Consider the rotational motion of a rigid body moving freatyder no forces (or, a
rigid body falling freely in a uniform gravitational field gbat there are no torques
about the CM; or, a rigid body freely pivoted at the CM).

If there are no torques acting, the total angular momenturmust remain con-
stant. It is convenient to choose axes fixed in the body, atignith its principal
axes of inertia. These body axes are themselves rotatirnigteese coordinates the
components of along the axes may change (see chapter 4 on rotating cotegdina
systems). Howevell | is still fixed, so that_-L = L? = const. Expressed in the
body coordinates, this reads:

L7 = Faf +1368 + 5

Furthermore, since there is no torque, the rotational ldretergy is fixed,T =
const. Expressed in the body coordinates, this second r@ti®a condition reads:

2T = 1168 + 126053 + 3053,

The components of the angular velocity simultaneoushgBativo different equa-
tions. These equations specify two ellipsoids amchust lie on the line given by
their intersection.

Suppose that all three principal moments of inertia are uaka@s is the case for,
say, a book or a tennis racket. We'll talke< |2 < I3. Now, start spinning the object
with angular velocity of magnitude aligned along thé, axis. Angular momentum
conservation says that the maximum magnitude of the conmpafew along the
I, axis in the subsequent motionds; /I», while kinetic energy conservation says
the maximum magnitude of this componentig/l1/1>. Sincely < I, we find that
the maximum component allowed by kinetic energy consewadt bigger, so that
the kinetic energy ellipsoid liesutsidethe angular momentum ellipsoid along the
I, axis. Likewise, sincé; < I3, the kinetic energy ellipsoid liesutsidethe angular
momentum ellipsoid in thé; direction. Therefore, the intersection of the two ellip-
soids comprises just two points, along the positive andthagh directions. This
is enough to tell you that rotation about theaxis is stable — see figure 2.9(a).



2.7 Inertia Tensor* 19

wy wy
T

w L 2 @m
®) ©

W (2) W

3
T

Figure 2.9 Free rotation of a rigid body. The diagrams show the (firsaoist of the)
kinetic energy and angular momentum ellipsoids for the fogation of a rigid body with
all three principal moments of inertia differeif,< I> < I3. In (a) the rotation is stable with
w pointing along thd; direction. In (b) the two ellipsoids intersect in a line, sliog that
rotation about thé, axis is unstable. In (c) the rotation is stable widfpointing in thel
direction.

Figure 2.10 Curves showing the time variation of angular velocity forreety rotating
object. The curves all lie on the ellipsoid of constant kinenhergy, and each one is given
by the intersection of this ellipsoid with a similar ellipd@f constant (magnitude of) angular
momentum. On the left the full curves are shown, while on gty parts of the curves on
the “back” of the kinetic energy ellipsoid are hidden. Thesed loops around tHe andls
axes show that the rotation is stable about these two axes.

A similar argument holds if you start with the angular vetgdined up along
the I3 axis, although in this case the angular momentum ellipdge&ldutside the
kinetic energy ellipsoid, with the intersection only at twoints along the positive
and negativés axes. Thus, rotation about the axis with the largest momfenedia
is also stable — see figure 2.9(c).

The final case we consider is where the initial angular vetasialigned along
thel, axis. Now, sincd; > |3, the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid in th direction, but, sincé, < |3, the angular momentum
ellipsoid lies inside the kinetic energy ellipsoid in thedirection. This means that
there is a whole line of points where the two ellipsoids is¢et — see figure 2.9(b).
In turn, this tells you that rotation about the axis with imediate moment of inertia
is unstable: any small misalignment can be amplified andhfexowill be observed
to “tumble” as it spins. It is easy to demonstrate this forngelf by throwing a book
in the air, spinning it about each of its three principal axetsirn.

These three cases are illustrated in figure 2.9. Figure 2d@sthe time varia-
tion of wfor the freely rotating body: each continuous curve showsdithe variation
of the components ab. The curves all lie on the surface of the ellipsoid of constan
kinetic energy, and each curve is given by the intersectfahis ellipsoid with an
ellipsoid of constant angular momentum.





