
4
Rotating Coordinate Systems

4.1 Time Derivatives in a Rotating Frame

First recall the result that, for a vectorA of fixed length, rotating about the origin
with constant angular velocityωωω, the rate of change ofA is

dA
dt

= ωωω�A :
Now let î, ĵ and k̂ be unit vectors of an inertial frameO and let î

0
, ĵ

0
and k̂

0
be unit

vectors of a rotating frameO0. Each of the primed basis vectors rotates rigidly with
O0, so

d î
0

dt
= ωωω� î

0;
with similar equations for̂j

0
and k̂

0
. Consider an arbitrary vectora and resolve it

into components inO andO0:
a = ai î+a j ĵ+ak k̂ = a0

i î
0+a0

j ĵ
0+a0

k k̂
0:

Differentiating with respect to time gives:

da
dt

= dai

dt
î+ daj

dt
ĵ+ dak

dt
k̂= da0i

dt
î
0+ da0j

dt
ĵ
0+ da0k

dt
k̂
0+a0

iωωω� î
0+a0

jωωω� ĵ
0+a0

kωωω� k̂
0:

At this point, we introduce some new notation. We normally use ȧ andda=dt
interchangeably. Let us now adopt the convention that

ȧ� da0i
dt

î
0+ da0j

dt
ĵ
0+ da0k

dt
k̂
0;

which means that you differentiate thecomponentsof a but not the basis vectors,
even if the basis vectors are time dependent. In other words,ȧ is therate of change
of a measured in the rotating frame. Thetotal rate of change ofa is then:

da
dt

= ȧ+ωωω�a :
There is one term for the rate of change with respect to the rotating axes and a second
term arising from the rotation of the axes themselves.
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40 4 Rotating Coordinate Systems

4.2 Equation of Motion in a Rotating Frame

We can use the result we just derived to work out the equation of motion for a particle
when its coordinates are measured in a frame rotating atconstantangular velocity
ωωω. Let a be a position vectorr. Differentiating once:

dr
dt

= ṙ+ωωω�r:
Differentiating again:

d2r
dt2

= d
dt

(ṙ+ωωω�r)= r̈+ωωω� ṙ+ωωω� (ṙ+ωωω�r)= r̈+2ωωω� ṙ+ωωω� (ωωω�r)
Newton’s law of motion isFtot = md2r=dt2, whereFtot is the total force acting, so
the equation of motion in the rotating frame becomes:

mr̈ = Ftot�2mωωω� ṙ�mωωω� (ωωω�r) :
The last two terms on the right hand side areapparent(or inertial or fictitious)
forces, arising because we are measuring positions with respect to axes which are
themselves rotating (i.e. accelerating).

4.3 Motion Near the Earth’s Surface

Assume that the Earth is spherically symmetric so that the weight of an object is a
vector directed towards the Earth’s centre. Pick an inertial frame O with origin at
the Earth’s centre, together with a frameO0 also with origin at the Earth’s centre, but
rotating with the Earth at angular velocityωωω. Write the total force on the particle as
its weightmg plus any other external forcesF (Ftot = F+mg).

Let R be a vector from the centre of the Earth to some point on or nearits surface,
as shown in figure 4.1, and letx be the displacement of the particle relative to this
point. This says that the position vector inO0 can be written as

r = R+x:
SinceR is fixed inO0, Ṙ = 0 andR̈ = 0, and the equation of motion becomes:

mẍ = F+mg�2mωωω� ẋ�mωωω� (ωωω� [R+x]):
We will now drop all terms of orderx=R or smaller. Even ifx is 10km, this ratio is
10km=6400km� 1:6�10�3. With this approximation:

1. ωωω� (ωωω� [R+x])�!ωωω� (ωωω�R) (If Rwas not so large we would normally
drop thisO(ω2) term),

2. the term involvingg simplifies,

g =� GMjR+xj3 (R+x)�!�GM
R3 R =�g

R
R
:
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Figure 4.1 Motion near the surface of the Earth. Displacementx measured from tip of a
(rotating) vectorR from the Earth’s centre to a point on or near its surface.

The approximate equation of motion becomes,

mẍ = F+mg��2mωωω� ẋ ;
where we have defined theapparent gravity,

g� = �g
R
R
�ωωω� (ωωω�R) :

We will take the latitude to beλ, as shown in figure 4.1 (note that latitude is zero at
the equator).

4.3.1 Apparent Gravity

The apparent gravityg� defines a local apparent vertical direction. It is what is
measured by hanging a mass from a spring so that the mass is stationary in the
rotating frame fixed to the Earth, andẋ = 0, ẍ = 0. We can easily work out the small
deflection angleα between the apparent vertical and the true vertical defined by line
to the Earth’s centre. The situation is illustrated in figure4.2.

The magnitude of the centrifugal term is,j�ωωω� (ωωω�R)j= ω2Rcosλ:
Applying the cosine rule to the right hand triangle in figure 4.2 gives,

g�2 = g2+(ω2Rcosλ)2�2gω2Rcos2 λ;
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Figure 4.2 Determining the deflection angle between true and apparent verticals on the
Earth’s surface.

(a) (b) (c)

ω

Figure 4.3 Particle moving across a rotating disc: seen from (a) an inertial frame, (b) a
frame rotating with the disc, (c) a frame rotating with the disc whenωa=v is large, wherev
is the particle’s speed in the inertial frame anda is the disc’s radius.

which tells us thatg� = g+O(ω2). Applying the sine rule to the same triangle gives,

sinα
ω2Rcosλ

= sinλ
g� :

Sinceα is small, we approximate sinα� α, and to orderω2 we can replaceg� by g,
to find:

α = ω2R
g

sinλcosλ :
This tells us that the deflection vanishes at the equator and the poles, and is maximal
at latitude 45�. The size of the deflection is governed by

ω2R
g

= 3:4cms�2

g
= 0:35%:

At Southampton,λ = 51�, we findα = 1:7�10�3rad= 0�60.
4.3.2 Coriolis Force

The Coriolis “force” (in quotation marks because it’s a fictitious or inertial force
associated with our use of an accelerated frame) is the term�2mωωω� ẋ

in the equation of motion. You see that it acts at right anglesto the direction of
motion, and is proportional to the speed. To understand the physical origin of this
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Figure 4.4 Coordinate system on the Earth’s surface.

force, it may be helpful to consider a particle moving diametrically across a smooth
flat rotating disc with no forces acting horizontally. An observer in an inertial frame
(watching the disc from above) will simply see the particle move in a straight line at
constant speed, as in figure 4.3(a). However, an observer rotating with the disc will
see the particle follow a curved track as in figure 4.3(b). If the observer does not
realise that the disc is rotating they will conclude that some force acts on the particle
at right angles to its velocity: this is the Coriolis force (in this example, the rotating
observer also sees the effect of the apparent forcemω2x acting radially outwards).
As the rotation rate,ω, gets large, the path seen by the rotating observer can get quite
complicated, figure 4.3(c).

To study the Coriolis force quantitatively, it is helpful tochoose a convenient
set of axes on the Earth’s surface. This is done as follows, and is illustrated in
figure 4.4. We choosêz along the apparent upward vertical (parallel to�g�), and
take x̂ pointing to the East. The third unit vectorŷ = ẑ� x̂ therefore points North.
Using this coordinate system, the equations of motion are:

mẍ = Fx�2mω(żcosλ� ẏsinλ);
mÿ = Fy�2mω ẋsinλ;
mz̈ = Fz�mg�+2mω ẋcosλ: (4.1)

4.3.3 Free Fall — Effects of Coriolis Term

For a particle in free fall, the non-gravitational forceF disappears from the equation
of motion, which becomes,

ẍ = g��2ωωω� ẋ:
We will work toO(ω) in this section, so we can approximateg� by g.
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We could investigate this using the coordinate form of the equation of motion
given in equation (4.1). However, in this case, we can proceed vectorially and solve
all three coordinate equations at the same time.

The equation of motion can be integrated once with respect totime, with the
initial conditionsx = a andẋ = v at t = 0, corresponding to a particle projected with
velocityv from pointa. This gives,

ẋ = v+gt�2ωωω� (x�a):
Since we are ignoring terms ofO(ω2), we can substitute the zeroth order solution,
x = a+vt +gt2=2 in the cross product term, giving,

ẋ = v+gt�2ωωω��vt + 1
2

gt2
� :

This can be integrated once more, using the same initial conditions,x = a andẋ = v
at t = 0, to give:

x = a+vt + 1
2

gt2�ωωω��vt2+ 1
3

gt3
� :

Now that we have our solution, we can express it in terms of ourchoice of coordi-
nates in figure 4.4. We will consider two cases: a particle dropped from a tower and
a shell fired from a cannon.

Particle dropped from a tower Consider a particle dropped from rest from a
vertical tower of heighth. Writing a vector as a column of its components along our
choice of axes, this says that the initial conditions are,

v =0@0
0
0

1A ; a =0@0
0
h

1A :
Usingωωω�g =�ωgcosλ x̂, we find that the components,x, y andzof x are:0@x

y
z

1A=0@0
0
h

1A� 1
2

gt2

0@0
0
1

1A+ 1
3

ωgt3cosλ

0@1
0
0

1A :
The particle hits the ground whenz= 0 at t =p2h=g. For thist, thex component
of the particle’s position is

1
3

ωcosλ
�

8h3

g

�1=2 :
This says that the particle strikes the ground a little to theEast of the base of the
tower.

Two views of this are shown in figure 4.5. On the left is the viewfrom a non-
inertial frame fixed to the rotating Earth: the particle lands a little to the East of the
base of the tower. On the right is a view from an inertial frame, where the Earth and
tower are spinning beneath the observer. Now the particle isseen to be projected
from the top of the tower. Because the particle is acted upon by the Earth’s gravita-
tional attraction, a central force, its angular momentum around the Earth’s rotation
axis is constant. As the particle falls, it gets closer to theaxis, so its angular velocity
must increase to keep the angular momentum constant. Therefore, the particle is
again seen to get slightly ahead of the tower as it falls.
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Figure 4.5 Two views of a particle dropped from the top of a tall tower fixed to the rotating
Earth. On the left, as seen in a rotating frame fixed to the Earth, and on the right as seen in
an inertial frame in which the Earth spins on its axis.
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Figure 4.6 Deflection of a cannon shell by Coriolis force when viewed from non-inertial
coordinates rotating with the Earth. A shell is fired at elevation angleπ=4 with speed
80ms�1 at latitude 24� in the Northern hemisphere. The Earth’s angular velocity isset
to ω = 0:05rads�1 to exaggerate the effect.

Shell fired from a cannon A shell is fired due North with speedv from a can-
non, with elevation angleπ=4. The initial conditions, taking the origin at the cannon,
are now,

v = vp
2

0@0
1
1

1A ; a =0@0
0
0

1A ;
and the cross product ofωωω with the initial velocity is,

ωωω�v = ωvp
2
(cosλ�sinλ) x̂:

Substituting in our solution we get:0@x
y
z

1A= vtp
2

0@0
1
1

1A� 1
2

gt2

0@0
0
1

1A+ 1
3

ωgt3cosλ

0@1
0
0

1A� ωvt2p
2

(cosλ�sinλ)0@1
0
0

1A :
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Figure 4.7 Foucault’s pendulum and much exaggerated view of the path ofthe bob. The
plane of oscillation rotates with angular velocity�ωsinλ, clockwise when seen from above.

Looking at thez component of this result shows thatz= vt=p2�gt2=2, so impact
occurs att =p2v=g. The Eastward deflection at impact is then found to be:p

2ωv3

3g2 (3sinλ�cosλ):
If 3sinλ > cosλ then the deflection at impact will be to the East. This occurs for
λ > tan�1(1=3) = 18:4�, roughly the latitude of Mexico City or Bombay.

The Eastward deflection is the sum of a positive cubic term in the timet plus
a quadratic term int which is positive forλ > 45�. So, at Southampton,λ = 51�,
the deflection is Eastward throughout the trajectory, but atlatitudes below 45�, the
deflection is initially to the West and then changes to the East. Figure 4.6 shows the
trajectory up to the impact time, forλ = 24�, with an initial speedv= 80ms�1, but
using a ridiculously large value,ω = 0:05rads�1, for the Earth’s angular velocity to
magnify the effect. This value ofω is about 700 times larger than the true value of
about 7:3�10�5rads�1. If the angular velocity were really as large as 0:05rads�1,
we wouldn’t be justified in using our small-ω approximation.

4.3.4 Foucault’s Pendulum

If you were to set up a pendulum at the North pole and start it swinging in a plane
(as viewed from an inertial frame — one not attached to the Earth), then clearly,
according to an observer standing on the Earth, the plane of oscillation would rotate
backwards at angular velocity�ω.

At lower latitudes, the phenomenon persists, but gets more and more diluted
until it vanishes at the equator. In fact, at latitudeλ the plane of oscillation rotates
at angular velocity�ωsinλ. This is illustrated, in a very exaggerated fashion, in
figure 4.7. At Southampton, latitude 51�, the plane rotates about 10� in one hour.
The effect was first demonstrated by Jean Foucault in Paris in18511. In practice, it
is quite hard to start the pendulum with the correct initial conditions: the bob often
ends up with a circular or elliptical path where the Foucaultrotation is much harder
to detect.

1For background, see the articleLéon Foucault, Scientific American (July 1998) pp52–59
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We will now derive the result for the rotation of the plane of oscillation. We make
our standard choice of coordinates, shown in figure 4.4, withthe z-axis along the
upward local vertical,̂z =�g�=g�. We will work to first order in the Earth’s angular
velocity ω, so we will drop the star ong�. The system we consider is a pendulum
of length l , free to swing in any direction with the same period, as illustrated in
figure 4.7. The pendulum should be long and heavy so that it will swing for a long
time, a matter of hours, in spite of air resistance (which we will neglect).

Measuring the displacementx of the bob from the bottom of the swing, the
equations of motion in our coordinate system are just those of equation (4.1), where
F is the tension in the support cable. In the approximation of small oscillations, we
can ignore allz terms compared tox andy. Then,Fx � �mgx=l andFy � �mgy=l .
Thex andy equations now become,

ẍ = �ω2
0x+2ωsinλẏ;

ÿ = �ω2
0y�2ωsinλẋ;

where we have definedω2
0 � g=l , so thatω0 is the natural angular frequency of the

pendulum. To solve these equations, define the complex quantity α = x+ iy. It is
easy to see that the two equations above combine into a singleequation forα,

α̈+2iωsinλα̇+ω2
0α = 0:

Look for a solution of the formα = Aeipt . Substituting this form shows that we have
a solution provided,

p = �ωsinλ�qω2
0+ω2sin2 λ� �ωsinλ�ω0;

where we have usedω0� ωsinλ. The general solution is therefore,

α = (Aeiω0t +Be�iω0t)e�i(ωsinλ) t ;
whereA andB are complex constants. With appropriate initial conditions the solu-
tion can be given as,

α = ae�i(ωsinλ) t cos(ω0t) :
The cos(ω0t) term describes the usual periodic swing of the pendulum and the
e�i(ωsinλ) t term describes the rotation of the plane of oscillation withangular ve-
locity�ωsinλ, as shown in figure 4.7.

Geometric Description � There is a nice geometric way to think about the Fou-
cault Pendulum which allows you to work out the rotation ratewithout solving a
differential equation2.

Draw parallel lines on a disc and then cut out a segment and fold the remainder
into a cone. Choose the disc radius so that the edge of the conesits on the Earth’s
surface at latitudeλ, with the surface of the cone tangential to the Earth’s surface
where it touches. Keep the cone fixed in space as the Earth turns beneath it. As the
Earth turns, the plane of swing of the Foucault pendulum always remains parallel to
the lines drawn on the cone’s surface. The construction is shown in figure 4.8. If you

2See J B Hart, R E Miller and R L Mills, Am. J. Phys.55 (1987) 67.
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λ

Figure 4.8 A geometric construction to find the rate of rotation of the plane of oscillation
of a Foucault pendulum.

think about it, you should be able to figure out the rotation rate from the geometry
(try it!).

This is an example of “parallel transport”: the plane of swing of the pendulum
is parallel-transported as the Earth rotates. This conceptis very important in differ-
ential geometry, which underlies general relativity.


