Rotating Coordinate Systems

4.1 Time Derivatives in a Rotating Frame

First recall the result that, for a vectér of fixed length rotating about the origin
with constant angular velocity, the rate of change & is

A
- = Al
ar @

Now let i, ] andk be unit vectors of an inertial fran@ and leti, | and k' be unit
vectors of a rotating fram@'. Each of the primed basis vectors rotates rigidly with
O, so

with similar equations forf' and k. Consider an arbitrary vecterand resolve it
into components i® andO’:

a=ai+ajjrak=al +aj +ak.
Differentiating with respect to time gives:
da da . daj- L 9% da "

a ~ dat' dt dt
_ g3y dg o
= O dtJ i at k—|—a1w><|—|—aw><1 —I—ak(oxk

At this point, we introduce some new notation. We normallg asindda/dt
interchangeably. Let us now adopt the convention that
dd J ~ dd( A/

a=a'*al+dt

which means that you differentiate tkemponent®f a but not the basis vectors,
even if the basis vectors are time dependent. In other wardsherate of change
of ameasured in the rotating fram@hetotal rate of change acd is then:

da
dt
There is one term for the rate of change with respect to tla¢ingtaxes and a second
term arising from the rotation of the axes themselves.

=atwxal.
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4 Rotating Coordinate Systems

4.2 Equation of Motion in a Rotating Frame

We can use the result we just derived to work out the equatiorotion for a particle
when its coordinates are measured in a frame rotatiegrgtantangular velocity
. Letabe a position vectar. Differentiating once:

dr .
Differentiating again:
dr d .

= F+WOXI+Wx(F+wxr)
= F+20Xr+wWx (WXr)

Newton’s law of motion isF; = mdPr /dt?, whereF is the total force acting, so
the equation of motion in the rotating frame becomes:

mi' = Fiot — 2MW X F — MW X (WX ) |.

The last two terms on the right hand side agparent(or inertial or fictitious)
forces, arising because we are measuring positions wiffeceé$o axes which are
themselves rotating (i.e. accelerating).

4.3 Motion Near the Earth’s Surface

Assume that the Earth is spherically symmetric so that thght®f an object is a
vector directed towards the Earth’s centre. Pick an ineirane O with origin at
the Earth’s centre, together with a frafealso with origin at the Earth’s centre, but
rotating with the Earth at angular velociky Write the total force on the particle as
its weightmg plus any other external forc€s(Fo; = F + mg).

LetR be a vector from the centre of the Earth to some point on oritesuirface,
as shown in figure 4.1, and Igtbe the displacement of the particle relative to this
point. This says that the position vector@can be written as

r=R+x.
SinceR is fixed inO’, R = 0 andR = 0, and the equation of motion becomes:
MX = F+mg—2mw x X —mw x (WX [R+X]).

We will now drop all terms of ordex/R or smaller. Even ik is 10km, this ratio is
10kny6400km: 1.6 x 10-3. With this approximation:

1. ox (Wx[R+X]) — wx (wx R) (If Rwas not so large we would normally
drop thisO(w?) term),

2. the term involvingy simplifies,

GM GM R
——— (R —~_R=-g-.



4.3 Motion Near the Earth’s Surface

o Southampton |
latitude A =51

Figure 4.1 Motion near the surface of the Earth. Displacementeasured from tip of a
(rotating) vectoR from the Earth’s centre to a point on or near its surface.

The approximate equation of motion becomes,

9

‘mi(:F—|—mg*—2mw><>'(

where we have defined tlag@parent gravity

g = —g%—wx (WxR)|.

We will take the latitude to b&, as shown in figure 4.1 (note that latitude is zero at
the equator).

4.3.1 Apparent Gravity

The apparent gravitg* defines a local apparent vertical direction. It is what is
measured by hanging a mass from a spring so that the masgionatg in the
rotating frame fixed to the Earth, ard= 0, X = 0. We can easily work out the smalll
deflection anglex between the apparent vertical and the true vertical defigeihé
to the Earth’s centre. The situation is illustrated in figdr2.

The magnitude of the centrifugal term is,

| —wx (WX R)| = w’RcosA.
Applying the cosine rule to the right hand triangle in figur2 dives,
g*? = g%+ (W?Rcosh)? — 2gw?’Rcog A,
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4 Rotating Coordinate Systems

w?Rcos\

Figure 4.2 Determining the deflection angle between true and appaestitals on the
Earth’s surface.

A >(,o

Figure 4.3 Particle moving across a rotating disc: seen from (a) artiaidrame, (b) a
frame rotating with the disc, (c) a frame rotating with theaivhenwa/v is large, wherey
is the particle’s speed in the inertial frame amis the disc’s radius.

(@) (b) (©

which tells us thay* = g+ O(w?). Applying the sine rule to the same triangle gives,

sina sinA
w?Rcos\ g

Sincea is small, we approximate sinx o, and to ordew? we can replacg* by g,
to find:

o= %sin)\cosx .

This tells us that the deflection vanishes at the equatortenpdles, and is maximal
at latitude 48. The size of the deflection is governed by

w’R _ 34cms?
g
At Southampton) = 51°, we finda = 1.7 x 10~ 3rad= 0°6'.

= 0.35%

4.3.2 Coriolis Force

The Coriolis “force” (in quotation marks because it's a fictiis or inertial force
associated with our use of an accelerated frame) is the term

—2mMw x X

in the equation of motion. You see that it acts at right angethe direction of
motion, and is proportional to the speed. To understand tigsipal origin of this



4.3 Motion Near the Earth’s Surface

Figure 4.4 Coordinate system on the Earth’s surface.

force, it may be helpful to consider a particle moving diamcatly across a smooth
flat rotating disc with no forces acting horizontally. An ebger in an inertial frame
(watching the disc from above) will simply see the particlevenin a straight line at
constant speed, as in figure 4.3(a). However, an obsenaimotvith the disc will
see the particle follow a curved track as in figure 4.3(b).h& bbserver does not
realise that the disc is rotating they will conclude that sdorce acts on the particle
at right angles to its velocity: this is the Coriolis forca this example, the rotating
observer also sees the effect of the apparent foxoéx acting radially outwards).

As the rotation ratey, gets large, the path seen by the rotating observer can et qu

complicated, figure 4.3(c).

To study the Coriolis force quantitatively, it is helpful ethoose a convenient
set of axes on the Earth’s surface. This is done as followd,isnllustrated in
figure 4.4. We choosé along the apparent upward vertical (paralleHg*), and
take X pointing to the East. The third unit vectgr= z x X therefore points North.
Using this coordinate system, the equations of motion are:

mX = Fx—2mw(zcosh —ysinA),
my = F,—2mwXsinA, (4.1)
mZz = F;—mg + 2mwXCcosA.

4.3.3 Free Fall — Effects of Coriolis Term

For a particle in free fall, the non-gravitational forfeelisappears from the equation
of motion, which becomes,
X=0g"—2wxX.

We will work to O(w) in this section, so we can approximateby g.
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We could investigate this using the coordinate form of theatign of motion
given in equation (4.1). However, in this case, we can prdeeetorially and solve
all three coordinate equations at the same time.

The equation of motion can be integrated once with respetiimi®, with the
initial conditionsx = a andx = v att = 0, corresponding to a particle projected with
velocityv from pointa. This gives,

X=V+0gt—2Wx (Xx—a).
Since we are ignoring terms @f(w?), we can substitute the zeroth order solution,
X = a+ vt +gt?/2 in the cross product term, giving,
. 1,
X=V+4+0gt—2Wx vt—|—§gt .

This can be integrated once more, using the same initialitond,x = aandx = v
att =0, to give:

X = a+vt+}gt2—w>< (vt2+}gt3)
— 5 2 :

Now that we have our solution, we can express it in terms ofcboice of coordi-
nates in figure 4.4. We will consider two cases: a particl@ped from a tower and
a shell fired from a cannon.

Particle dropped from a tower Consider a particle dropped from rest from a
vertical tower of heighh. Writing a vector as a column of its components along our
choice of axes, this says that the initial conditions are,

0 0
v=1[0], a=10
0 h
Usingw x g = —wgcosA X, we find that the components,y andz of x are:
X 0 1 0 1 1
yl=10 —Egtz 0 —I—éwgt?’cos?\ 0
z h 1 0

The particle hits the ground when= 0 att = y/2h/g. For thist, thex component

of the particle’s position is
1 3\ 1/2
= WCOSA (ﬂ) .
3 g

This says that the particle strikes the ground a little toEast of the base of the
tower.

Two views of this are shown in figure 4.5. On the left is the viesm a non-
inertial frame fixed to the rotating Earth: the particle lardittle to the East of the
base of the tower. On the right is a view from an inertial framieere the Earth and
tower are spinning beneath the observer. Now the partictees to be projected
from the top of the tower. Because the particle is acted uyahd Earth’s gravita-
tional attraction, a central force, its angular momentuouad the Earth’s rotation
axis is constant. As the particle falls, it gets closer toatkis, so its angular velocity
must increase to keep the angular momentum constant. ©herehe particle is
again seen to get slightly ahead of the tower as it falls.
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Figure 4.5 Two views of a particle dropped from the top of a tall tower dixe the rotating
Earth. On the left, as seen in a rotating frame fixed to thehEarid on the right as seen in
an inertial frame in which the Earth spins on its axis.

Figure 4.6 Deflection of a cannon shell by Coriolis force when viewedroon-inertial
coordinates rotating with the Earth. A shell is fired at elmraanglet/4 with speed
80ms! at latitude 24 in the Northern hemisphere. The Earth’s angular velocityeis
tow = 0.05rads? to exaggerate the effect.

Shell fired from a cannon A shell is fired due North with speadfrom a can-
non, with elevation angla/4. The initial conditions, taking the origin at the cannon,
are now,

0 0

v
v=—|[1], a=10],
V21 0

and the cross product o§ with the initial velocity is,

wxv=2 (COsSA —sinA) X.

V2

Substituting in our solution we get:

X 0 0 1 (thz

vt 1 1
= — (1] -Zgt?| 0| +Zwgt3cos\ | 0] — —— (cosh—sinA) [ O
)z/ V2 1\, 2" 1 3™ 0 vz ) 0
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X —WsinA

mg

Figure 4.7 Foucault’s pendulum and much exaggerated view of the patheobob. The
plane of oscillation rotates with angular velocitgsinA, clockwise when seen from above.

Looking at thez component of this result shows that vt/v/2 — gt?/2, so impact
occurs at = v/2v/g. The Eastward deflection at impact is then found to be:

V202
30?2

(3sin\ — COsA).

If 3sinA > cosh then the deflection at impact will be to the East. This occars f
A > tar1(1/3) = 18.4°, roughly the latitude of Mexico City or Bombay.

The Eastward deflection is the sum of a positive cubic terninéntimet plus
a quadratic term in which is positive forA > 45°. So, at Southamptoi, = 51°,
the deflection is Eastward throughout the trajectory, blat#tudes below 45 the
deflection is initially to the West and then changes to the.Bagure 4.6 shows the
trajectory up to the impact time, far= 24°, with an initial speed/= 80ms™1, but
using a ridiculously large valuey= 0.05rads !, for the Earth’s angular velocity to
magnify the effect. This value @b is about 700 times larger than the true value of
about 73 x 10-°rads™*. If the angular velocity were really as large a8®rads?,
we wouldn’t be justified in using our smadk-approximation.

4.3.4 Foucault's Pendulum

If you were to set up a pendulum at the North pole and startiigwwvg in a plane
(as viewed from an inertial frame — one not attached to theéhizathen clearly,
according to an observer standing on the Earth, the plansailfaiion would rotate
backwards at angular velocitycw.

At lower latitudes, the phenomenon persists, but gets modenaore diluted
until it vanishes at the equator. In fact, at latitiddéhe plane of oscillation rotates
at angular velocity-wsinA. This is illustrated, in a very exaggerated fashion, in
figure 4.7. At Southampton, latitude 9he plane rotates about °Lth one hour.
The effect was first demonstrated by Jean Foucault in Pafi83d. In practice, it
is quite hard to start the pendulum with the correct init@ditions: the bob often
ends up with a circular or elliptical path where the Fouceatfation is much harder
to detect.

1For background, see the artitléon FoucaultScientific American (July 1998) pp52-59
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We will now derive the result for the rotation of the plane s€itlation. We make
our standard choice of coordinates, shown in figure 4.4, Whig¢z-axis along the
upward local verticalz = —g*/g*. We will work to first order in the Earth’s angular
velocity w, so we will drop the star og*. The system we consider is a pendulum
of lengthl, free to swing in any direction with the same period, as ifated in
figure 4.7. The pendulum should be long and heavy so thatliswihg for a long
time, a matter of hours, in spite of air resistance (which viengglect).

Measuring the displacememrtof the bob from the bottom of the swing, the
equations of motion in our coordinate system are just thbsquation (4.1), where
F is the tension in the support cable. In the approximatiomudlsoscillations, we
can ignore alzterms compared te andy. Then,F, ~ —mgx/| andF, ~ —mgy/I.
Thex andy equations now become,

= —Wx+ 2wsin\y,
= —Wy— 2wsinAX,

where we have defined = g/1, so thatuy is the natural angular frequency of the
pendulum. To solve these equations, define the complex ipant x+iy. It is
easy to see that the two equations above combine into a €igghgion for,

6 -+ 2iwsiNAG + wia = 0.

Look for a solution of the forno = A€P'. Substituting this form shows that we have

a solution provided,
P = —wSiNA+ 4/ w8+ w2sirA

~  —WSINA £ Wy,
where we have usad > wsinA. The general solution is therefore,
= (Aejwot + Be—iwot) e—i(msin)\)t7

whereA andB are complex constants. With appropriate initial condiitime solu-
tion can be given as,

= ae—i(msin)\)t COS(OL)ot) )

The cogupt) term describes the usual periodic swing of the pendulum &ed t
e-i(@siM)t term describes the rotation of the plane of oscillation veittyular ve-
locity —wsinA, as shown in figure 4.7.

Geometric Description *  There is a nice geometric way to think about the Fou-

cault Pendulum which allows you to work out the rotation natéhout solving a
differential equatiofi

Draw parallel lines on a disc and then cut out a segment addliel remainder
into a cone. Choose the disc radius so that the edge of thesitsnen the Earth’s
surface at latituda@, with the surface of the cone tangential to the Earth’s serfa
where it touches. Keep the cone fixed in space as the Earthlbemeath it. As the
Earth turns, the plane of swing of the Foucault pendulum ydwamains parallel to
the lines drawn on the cone’s surface. The constructiorag/stin figure 4.8. If you

2See J B Hart, R E Miller and R L Mills, Am. J. Phys5 (1987) 67.
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Figure 4.8 A geometric construction to find the rate of rotation of thar@ of oscillation
of a Foucault pendulum.

think about it, you should be able to figure out the rotatide feom the geometry
(try ith).

This is an example of “parallel transport”: the plane of syvaf the pendulum
is parallel-transported as the Earth rotates. This coriseygry important in differ-
ential geometry, which underlies general relativity.



