Simple Harmonic Motion *

Note: this section is not part of the syllabus for PHYS2006. You should already be
familiar with simple harmonienotion from your first year course PHYS1015 Motion
and Relativity. This sectionis includedfor completenesandasareminder.

5.1 Simple Harmonic Motion

This is one of the most important phenomena in physics: it applies to the description
of small oscillations of any system about a position of stable equilibrium.

Work in one dimension, so that one coordinate describes the position of the
system (e.g. the displacement from the equilibrium position of a spring, the angle
of a pendulum from the vertical). Only conservative forces do work, so there is a
potentiaV (x). Choose coordinates so that 0 is a position of stable equilibrium.

This means dv
F(x=0) =0, -—| =0.
dx|,

As long asx remains small, we can expand the potential:
1
V(X) =V(0) +XV'(0) + 5xV"(0) ++ -

However,V'(0) = 0, sincex = 0 is a position of equilibrium, so the first derivative
term vanishes. Letting= V" (0) (kis just the force constant for a spring force) and
choosing our zero of potential energy so tW&0) = 0, we find:

V() = Tl .
2
The corresponding force I5(x) = —kx. We ignore the special cage= 0, when the
expansion oV begins at higher order. K < 0 then the equilibrium is unstable, and
the system will move out of the region where our approximation is valid. Hence we
will look at displacements around positions of stable equilibrium for wkichO.
We define e&Simple Harmonic Oscillatoas a one-dimensional problem with:

1 1
V(X) = Ekx2 = érnu)(z)x2

wherek > 0 and we have defined = k/m.
A mass oscillating on a Hooke’s law spring is a simple harmonic oscillator.
Small oscillations of a simple pendulum are simple harmonic.
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5.1.1 General Solution

The equation of motion for the simple harmonic oscillator is
%+ wdx = 0.

This is a second order homogeneous linear differential temjuameaning that the
highest derivative appearing is a second order one, eachderthe left contains
exactly one power af, x or X (there is nokterm in this case) and there is no term (a
constant or a function of time) on the right.

Two independent solutions of this are ¢met) and sifuxt). The general solu-
tion is a linear combination of these, which can be writteagmeral forms:

X = Acogwgt)+ Bsin(wpt)
= Ccoquot+9)
= Dsin(uxot +¢)
= Re(ad"™)
= Im(pe'*)

whereA, B, C, D, 0 ande are real constants, aimdandf3 are complex constants. Use
whichever solution is most convenient. We will often use ¢benplex exponential
forms, so we will need to remember that the physical solstame found by taking
the real or imaginary parts. Some terminology associatél tive simple harmonic
oscillator is:

angular frequency wy
period T =2m/uy
amplitude a=|C|=|D|=vAZ+B2=|a|=|B|

The arguments of the sine or cosine in (@ost + 8) and sirfogt + €) are called the
phase. The period of a simple harmonic oscillator is inddpahof the amplitude:
this is a special property, not true for oscillators in gaher

5.2 Damped Harmonic Motion
We’'ll assume that a damping force proportional to speeddsepnt,

Fdamping= —2MyX.

This equation defineg (note that in definingy we have pulled out one factor af
for conveniencey could still itself depend om). Warning many authors use/2
in place ofy.

In general, the damping can be some power series ikVé approximate by
keeping the linear term only. In practice, this turns out twkwvell: the viscously
damped harmonic oscillator is a very useful model for altsof physical systems.

The equation of motion has become:

X+ 2yX+ whx = 0.

This is still a linear, homogeneous second order diffeegérggquation. We try a
solution of the form
x= A



5.2 Damped Harmonic Motion
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Figure 5.1 Amplitude as a function of time for a lightly damped harmoogcillator. The
time is measured in units of the “perio@"= 211/ w. The dashed lines show the exponentially
damped envelope of the oscillatory motion.

whereA andQ may be complex (and we take the real part at the end). We will do
this same trick of using a complex exponential many timesem&ubstituting our
trial solution gives:

(Q%+2yQ + i) A = 0.

Since the equation is lineak is arbitrary, and we want it non zero in order to have
a non-trivial solution. The factor in brackets then givesuadyatic forQ: the two
roots of this will provide us with our two independent soturs.

5.2.1 Small Damping: Y < o}

The roots of the quadratic are

Q= -y+iw, where  w= /w2 -2

A solution may be writterx = Re(A;€“ 4 Aye~'®)e~", which can be reexpressed
as:
x = Be Y cogwt +5).

This describes an oscillation with “frequenay’= /w3 — y2 and exponentially de-

caying “amplitude”Ae™™, as illustrated in figure 5.1. The quotes are here because
the motion is no longer periodic, so there is not really ademty. However, you
could use the time between the system crosgiag0 in the samedirection as a
measure of a “period”, since this time ist2o. If the damping is truly small, then
the oscillations will appear to have amplitude ™" if you watch them for a short
interval around time.

In one “period”,T = 21/ w of a lightly damped oscillator's motion, the fractional
energy loss is found by comparing the total energy at thé¢ stahe period and at
the end. For any time, the fractional loss is given by

AE _ E(t) - E(t+T)

=1-e 2T,
E E(t)

When the damping is very smayl/uwy < 1, we havew a wy and then

AE
—zZT[gEZ—T[7
E w Q
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Figure 5.2 Amplitude as a function of time for heavily damped (solidw@)rand critically
damped (dashed curve) harmonic oscillators. The time isuned in units of the natural
periodT = 21/ wy of the oscillator when the damping is switched off.

which defines theuality factor Q Warning: definitions ofQ vary from author to
author.

5.2.2 Large Damping: Y > w3

The roots of the quadratic are

Q= -y /- o}

and a solution may be written
x = Ae~(VFVY=G)t 4 Be(y=v/¥V—uwp)t,

This is a sum of two exponentials, both decaying with timesirated by the solid
curve in figure 5.2. TheB” exponential falls more slowly, so it dominates at large
times. This case is sometimes referred to as “overdamped”.

5.2.3 Critical Damping: y* = &%

In this special case the solutions fOrare degenerate (the roots of the quadratic
coincide). It looks as though there is just one solution. Ewsv, a second order
differential equatiomusthave two independent solutions. You can check by differ-
entiating that the second solution in this case is

x=Bte™,
so that the general solution becomes:
x= (A+Bt)e ™.
The critically damped solution is illustrated by the dashenre in figure 5.2. Crit-
ical damping is important: for example a measuring instmins@ould be critically

damped so that the reading settles down as fast as possibtamthe response time
being too slow.



5.3 Driven damped harmonic oscillator
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Figure 5.3 Amplitude of forced harmonic oscillator as a function ofuilng frequency (in
units of natural frequency)

5.3 Driven damped harmonic oscillator

The equation of motion for a damped harmonic oscillatorarigy an external force
F(t)is
MX -+ 2myX + muix = F (t).

Consider the case of a periodic driving force,
F(t) = mfcogwt) = mfRe(e™),

and look for thesteady statsolution, when anyransientdamped solution has died
away (the transients are solutions of the differential #guawithout the driving
termF(t), that is, a free damped oscillator). Look for a comptexhich solves

2+ 2yz+ Bz = fe,

and take the real part afat the end. Try a trial solution= Ad“: the idea is that
after a long time we expect the system to be oscillating withdame frequency as
the driving force. More technically, the full solution oithdifferential equationis the
sum of the solution we are about to find plusy solution of the undriven equation
(without the fé** term). Because of the damping, the solution in the undrieec
decays exponentially with time: we are interested in whapeas after a long time
when thistransientsolution has died out.
Returning to our trial solutiorg, = Ad“ solves the equation if

(—w? 4 2iyw+ wd) Ad™ = f,
Cancelling theg®* from both sides and solving fa gives

f
A= .
— G2 + 2iyw+ 0B

Writing A= |Ale ", we find that the oscillation amplitudd| and phase lad are
given by, .

A=
(- w?)24-ay20?
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Figure 5.4 Phase lag of forced harmonic oscillator as a function ofidg\frequency (in
units of natural frequency)

and 2y
W

tand= ————.
w5 — WP
In figures 5.3 and 5.4 we plot the amplitude (actualfA|/ f) and the phass as
functions ofw/wx, for four different values of thequality factor Q= wy/2y. The
quality factor tells you about the ratio of the energy starethe oscillator to the
energy loss per cycle. As you move from solid to finer and firsesheéd lines th®
values are 1, 2, 4 and 8 respectively.



