
5
Simple Harmonic Motion �
Note: this section is not part of the syllabus for PHYS2006. You should already be
familiar with simple harmonic motion from your first year course PHYS1015 Motion
and Relativity. This section is included for completeness and as a reminder.

5.1 Simple Harmonic Motion

This is one of the most important phenomena in physics: it applies to the description
of small oscillations of any system about a position of stable equilibrium.

Work in one dimension, so that one coordinate describes the position of the
system (e.g. the displacement from the equilibrium position of a spring, the angle
of a pendulum from the vertical). Only conservative forces do work, so there is a
potentialV(x). Choose coordinates so thatx= 0 is a position of stable equilibrium.
This means

F(x=0) = 0; �dV
dx

����
0
= 0:

As long asx remains small, we can expand the potential:

V(x) =V(0)+xV0(0)+ 1
2

x2V00(0)+ � � �
However,V 0(0) = 0, sincex= 0 is a position of equilibrium, so the first derivative
term vanishes. Lettingk=V00(0) (k is just the force constant for a spring force) and
choosing our zero of potential energy so thatV(0) = 0, we find:

V(x) = 1
2

kx2+ � � � :
The corresponding force isF(x) =�kx. We ignore the special casek= 0, when the
expansion ofV begins at higher order. Ifk< 0 then the equilibrium is unstable, and
the system will move out of the region where our approximation is valid. Hence we
will look at displacements around positions of stable equilibrium for whichk> 0.

We define aSimple Harmonic Oscillatoras a one-dimensional problem with:

V(x) = 1
2

kx2 = 1
2

mω2
0x2

wherek> 0 and we have definedω2
0 = k=m.

A mass oscillating on a Hooke’s law spring is a simple harmonic oscillator.
Small oscillations of a simple pendulum are simple harmonic.
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50 5 Simple Harmonic Motion�
5.1.1 General Solution

The equation of motion for the simple harmonic oscillator is

ẍ+ω2
0x= 0:

This is a second order homogeneous linear differential equation, meaning that the
highest derivative appearing is a second order one, each term on the left contains
exactly one power ofx, ẋ or ẍ (there is no ˙x term in this case) and there is no term (a
constant or a function of time) on the right.

Two independent solutions of this are cos(ω0t) and sin(ω0t). The general solu-
tion is a linear combination of these, which can be written inseveral forms:

x = Acos(ω0t)+Bsin(ω0t)= Ccos(ω0t +δ)= Dsin(ω0t +ε)= Re(αeiω0t)= Im(βe�iω0t)
whereA, B, C, D, δ andε are real constants, andα andβ are complex constants. Use
whichever solution is most convenient. We will often use thecomplex exponential
forms, so we will need to remember that the physical solutions are found by taking
the real or imaginary parts. Some terminology associated with the simple harmonic
oscillator is:

angular frequency ω0

period T = 2π=ω0

amplitude a= jCj= jDj=pA2+B2 = jαj= jβj
The arguments of the sine or cosine in cos(ω0t + δ) and sin(ω0t + ε) are called the
phase. The period of a simple harmonic oscillator is independent of the amplitude:
this is a special property, not true for oscillators in general.

5.2 Damped Harmonic Motion

We’ll assume that a damping force proportional to speed is present,

Fdamping= �2mγẋ:
This equation definesγ (note that in definingγ we have pulled out one factor ofm
for convenience:γ could still itself depend onm). Warning: many authors useγ=2
in place ofγ.

In general, the damping can be some power series in ˙x. We approximate by
keeping the linear term only. In practice, this turns out to work well: the viscously
damped harmonic oscillator is a very useful model for all sorts of physical systems.

The equation of motion has become:

ẍ+2γẋ+ω2
0x= 0:

This is still a linear, homogeneous second order differential equation. We try a
solution of the form

x= AeΩt
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Figure 5.1 Amplitude as a function of time for a lightly damped harmonicoscillator. The
time is measured in units of the “period”T = 2π=ω. The dashed lines show the exponentially
damped envelope of the oscillatory motion.

whereA andΩ may be complex (and we take the real part at the end). We will do
this same trick of using a complex exponential many times more. Substituting our
trial solution gives: (Ω2+2γΩ+ω2

0)AeΩt = 0:
Since the equation is linear,A is arbitrary, and we want it non zero in order to have
a non-trivial solution. The factor in brackets then gives a quadratic forΩ: the two
roots of this will provide us with our two independent solutions.

5.2.1 Small Damping: γ2< ω2
0

The roots of the quadratic are

Ω = �γ� iω; where ω =qω2
0� γ2:

A solution may be writtenx= Re(A1eiωt +A2e�iωt)e�γt, which can be reexpressed
as:

x= Be�γt cos(ωt +δ):
This describes an oscillation with “frequency”ω =qω2

0� γ2 and exponentially de-

caying “amplitude”Ae�γt, as illustrated in figure 5.1. The quotes are here because
the motion is no longer periodic, so there is not really a frequency. However, you
could use the time between the system crossingx = 0 in thesamedirection as a
measure of a “period”, since this time is 2π=ω. If the damping is truly small, then
the oscillations will appear to have amplitudeAe�γt if you watch them for a short
interval around timet.

In one “period”,T = 2π=ω of a lightly damped oscillator’s motion, the fractional
energy loss is found by comparing the total energy at the start of the period and at
the end. For any time,t, the fractional loss is given by

∆E
E

= E(t)�E(t+T)
E(t) = 1�e�2γT :

When the damping is very small,γ=ω0� 1, we haveω � ω0 and then

∆E
E
� 2π

2γ
ω0
� 2π

Q
;
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Figure 5.2 Amplitude as a function of time for heavily damped (solid curve) and critically
damped (dashed curve) harmonic oscillators. The time is measured in units of the natural
periodT = 2π=ω0 of the oscillator when the damping is switched off.

which defines thequality factor Q. Warning: definitions ofQ vary from author to
author.

5.2.2 Large Damping: γ2 >ω2
0

The roots of the quadratic are

Ω =�γ�qγ2�ω2
0

and a solution may be written

x= Ae�(γ+pγ2�ω2
0 )t +Be�(γ�pγ2�ω2

0 )t :
This is a sum of two exponentials, both decaying with time, illustrated by the solid
curve in figure 5.2. The “B” exponential falls more slowly, so it dominates at large
times. This case is sometimes referred to as “overdamped”.

5.2.3 Critical Damping: γ2= ω2
0

In this special case the solutions forΩ are degenerate (the roots of the quadratic
coincide). It looks as though there is just one solution. However, a second order
differential equationmusthave two independent solutions. You can check by differ-
entiating that the second solution in this case is

x= Bte�γt;
so that the general solution becomes:

x= (A+Bt)e�γt:
The critically damped solution is illustrated by the dashedcurve in figure 5.2. Crit-
ical damping is important: for example a measuring instrument should be critically
damped so that the reading settles down as fast as possible without the response time
being too slow.
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Figure 5.3 Amplitude of forced harmonic oscillator as a function of driving frequency (in
units of natural frequency)

5.3 Driven damped harmonic oscillator

The equation of motion for a damped harmonic oscillator driven by an external force
F(t) is

mẍ+2mγẋ+mω2
0x= F(t):

Consider the case of a periodic driving force,

F(t) = m fcos(ωt) = m fRe(eiωt);
and look for thesteady statesolution, when anytransientdamped solution has died
away (the transients are solutions of the differential equation without the driving
termF(t), that is, a free damped oscillator). Look for a complexzwhich solves

z̈+2γż+ω2
0z= f eiωt ;

and take the real part ofz at the end. Try a trial solutionz= Aeiωt : the idea is that
after a long time we expect the system to be oscillating with the same frequency as
the driving force. More technically, the full solutionof the differential equation is the
sum of the solution we are about to find plusanysolution of the undriven equation
(without the f eiωt term). Because of the damping, the solution in the undriven case
decays exponentially with time: we are interested in what happens after a long time
when thistransientsolution has died out.

Returning to our trial solution,z= Aeiωt solves the equation if(�ω2+2iγω+ω2
0)Aeiωt = f eiωt :

Cancelling theeiωt from both sides and solving forA gives

A= f�ω2+2iγω+ω2
0
:

Writing A= jAje�iδ, we find that the oscillation amplitudejAj and phase lagδ are
given by, jAj= fq(ω2

0�ω2)2+4γ2ω2
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Figure 5.4 Phase lag of forced harmonic oscillator as a function of driving frequency (in
units of natural frequency)

and

tanδ = 2γω
ω2

0�ω2
:

In figures 5.3 and 5.4 we plot the amplitude (actuallyω2
0jAj= f ) and the phaseδ as

functions ofω=ω0, for four different values of thequality factor Q= ω0=2γ. The
quality factor tells you about the ratio of the energy storedin the oscillator to the
energy loss per cycle. As you move from solid to finer and finer dashed lines theQ
values are 1, 2, 4 and 8 respectively.


