
6
Coupled Oscillators

In what follows, I will assume you are familiar with the simple harmonic oscilla-
tor and, in particular, the complex exponential method for finding solutions of the
oscillator equation of motion. If necessary, consult the revision section on Simple
Harmonic Motion in chapter 5.

6.1 Time Translation Invariance

Before looking at coupled oscillators, I want to remind you how time translation
invariance leads us to use (complex) exponential time dependence in our trial solu-
tions. Later, we will see that spatial translation invariance leads to exponential forms
for the spatial parts of our solutions as well.

To examine the implication of time translation invariance,it’s enough to consider
a single damped harmonic oscillator, with equation of motion,

mẍ=�2mγẋ�mω2
0x;

where the two terms on the right are the damping and restoringforces respectively.
We can rearrange this to,

ẍ+2γẋ+ω2
0x= 0:

To solve this equation, we used an ansatz (or guess) of the form

x= AeΩt;
whereA andΩ are in general complex (to get a physical solution you can usethe
real or imaginary parts of a complex solution). The reason that we could guess such
a solution lies in time translation invariance.

What this invariance means is that we don’t care about the origin of time. It
doesn’t matter what our clock read when we started observingthe system. In the
differential equation, this property appears because the time dependence enters only
through time derivatives,not through the value of time itself. In terms of a solution
x(t), this means that:

if x(t) is a solution, then so isx(t +c) for any constantc.

The simplest possibility is thatx(t+c) is proportional tox(t), with some proportion-
ality constantf (c), depending onc,

x(t +c) = f (c)x(t):
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We can solve this equation by a simple trick. We differentiate with respect toc and
then setc= 0 to obtain

ẋ(t) = Ωx(t);
whereΩ is just the value ofḟ (0). The general solution of this linear first order
differential equation is

x(t) = AeΩt:
We often talk aboutcomplexexponential forms becauseΩ must have a non-zero
imaginary part if we want to get oscillatory solutions. In fact, from now on I will let
Ω = iω, so thatω is real for a purely oscillatory solution.

We can’t just useanyvalue we like forω. The allowed values are determined by
demanding thatAeiωt actually solves the equation of motion:(�ω2+2iγω+ω2

0)Aeiωt = 0:
If we are to have a non-trivial solution,Ashould not vanish. The factor in parentheses
must then vanish, giving a quadratic equation to determineω. The two roots of the
quadratic give us two independent solutions of the originalsecond order differential
equation.

6.2 Normal Modes

We want to generalise from a single oscillator to a set of oscillators which can affect
each others’ motion. That is to say, the oscillators arecoupled.

If there aren oscillators with positionsxi(t) for i = 1; : : :;n , we will denote the
“position” of the whole system by a vectorx(t) of the individual locations:

x(t) = (x1(t);x2(t); : : :;xn(t)):
The individual positionsxi(t) might well be generalised coordinates rather than real
physical positions.

The differential equations satisfied by thexi will involve time dependence only
through time derivatives, which means we can look for a time translation invariant
solution, as described above. This means all the oscillators must have the same
complex exponential time dependence,eiωt , whereω is real for a purely oscillatory
motion. The solution then takes the form,

x(t) =0BB@A1

A2
...

An

1CCAeiωt ;
where theAi areconstants. This describes a situation where all the oscillators move
with thesame frequency, but, in general, different phases and amplitudes: the oscil-
lators’ displacements are in fixed ratios determined by theAi. This kind of motion
is called anormal mode. Theoverall normalisation is arbitrary (by linearity of the
differential equation), which is to say that you can multiply all theAi by the same
constant and still have the same normal mode.

Our job is to discover whichω are allowed, and then determine the set ofAi

corresponding to each allowedω. We will find precisely the right number of normal
modes to provide all the independent solutions of the set of differential equations.
For n oscillators obeying second order coupled equations there are 2n independent
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solutions: we will findn coupled normal modes which will give us 2n real solutions
when we take the real and imaginary parts.

Once we have found all the normal modes, we can constructanypossible motion
of the system as a linear combination of the normal modes. Compare this with
Fourier analysis, where any periodic function can be expanded as a series of sines
and cosines.

6.3 Coupled Oscillators

Take a set of coupled oscillators described by a set of coordinatesq1; : : : ;qn. In
general the potentialV(q) will be a complicated function which couples all of these
oscillators together. Considersmalloscillations about a position of stable equilib-
rium, which (by redefining our coordinates if necessary) we can take to occur when
qi = 0 for i = 1; : : : ;n. Expanding the potential in a Taylor series about this point,
we find,

V(q) =V(0)+∑
i

∂V
∂qi

����
0
qi + 1

2 ∑
i; j ∂2V

∂qi∂q j

����
0
qiq j + � � � :

By adding an overall constant toV we can chooseV(0) = 0. Since we are at a
position of equilibrium, all the first derivative terms vanish. So the first terms that
contribute are the second derivative ones. We define,

Ki j � ∂2V
∂qi∂q j

����
0
;

and drop all the remaining terms in the expansion. Note thatKi j is a constant sym-
metric (why?)n�n matrix. The corresponding force is thus

Fi =�∂V
∂qi

=�∑
j

Ki j q j

and thus the equations of motion are

Miq̈i = �∑
j

Ki j q j ;
for i = 1; : : :;n. Here theMi are the masses of the oscillators, andK is a matrix of
‘spring constants’. Indeed for a system of masses connectedby springs, with each
mass moving in the same single dimension, the coordinates can be taken as the real
position coordinates, and thenM is a (diagonal in this case) matrix of masses, while
K is a matrix determined by the spring constants. Be aware however, that coupled
oscillator equations occur more generally (for example in electrical circuits) where
theqis need not be actual coordinates but more general parametersdescribing the
system (known as generalised coordinates) and in this caseM andK play similar
rôles even if they do not in actuality correspond to masses and spring constants.

To simplify the notation, we will write the equations of motion as a matrix equa-
tion. So we define,

M =0BB@M1 0 � � � 0
0 M2 � � � 0
...

...
. ..

...
0 0 � � � Mn

1CCA ; K =0BB@K11 K12 � � � K1n

K21 K22 � � � K2n
...

...
. ..

...
Kn1 Kn2 � � � Knn

1CCA :
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Figure 6.1 Two coupled harmonic oscillators. The vertical dashed lines mark the equilib-
rium positions of the two masses.

Likewise, letq andq̈ be column vectors,

q =0BB@q1

q2
...

qn

1CCA ; q̈ =0BB@ q̈1

q̈2
...

q̈n

1CCA :
With this notation, the equation of motion is,

Mq̈ = �Kq; or q̈ =�M�1Kq;
whereM�1 is the inverse ofM.

Now look for a normal mode solution,q = Aeiωt , whereA is a column vector.
We haveq̈ = �ω2 q, and cancellingeiωt factors, gives finally,

M�1KA = ω2 A :
This is now aneigenvalue equation. The squares of the normal mode freqencies are
theeigenvaluesof M�1K, with the column vectorsA as the correspondingeigenvec-
tors.

6.4 Example: Masses and Springs

As a simple example, let’s look at the system shown in figure 6.1, comprising two
massesm1 andm2 constrained to move along a straight line. The masses are joined
by a spring with force constantk0, andm1 (m2) is joined to a fixed wall by a spring
with force constantk1 (k2). Assume that the equilibrium position of the system has
each spring unstretched, and use the displacementsx1 andx2 of the two masses away
from their equilibrium positions as coordinates. The forceon massm1 is then

F1 =�k1x1�k0(x1�x2)
and on massm2

F2 =�k2x2�k0(x2�x1):
(Note that these follow from a potential of formV = 1

2k1x2
1+ 1

2k0(x2�x1)2+ 1
2k2x2

2.)
You can check that Newton’s 2nd law thus implies, in matrix form:�

m1 0
0 m2

��
ẍ1

ẍ2

�= ��k1+k0 �k0�k0 k2+k0��x1

x2

� :
The eigenvalue equation we have to solve is:�(k1+k0)=m1 �k0=m1�k0=m2 (k2+k0)=m2

��
A1

A2

� = ω2
�

A1

A2

� :
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Now specialise to a case wherem1 = m, m2 = 2m, k1 = k, k2 = 2k andk0 = 2k.
The eigenvalue equation becomes,�

3 �2�1 2

��
A1

A2

�= m
k

ω2
�

A1

A2

� ;
or, settingλ = mω2=k, �

3�λ �2�1 2�λ

��
A1

A2

�= �0
0

� :
For there to be a solution, the determinant of the 2� 2 matrix in the last equation
must vanish. This gives a quadratic equation forλ,

λ2�5λ+4= 0;
with rootsλ = 1 andλ = 4. The corresponding eigenfrequencies areω =pk=m
andω = 2

p
k=m. For each eigenvalue, there is a corresponding eigenvector. With

λ = 1 you findA2 = A1, and withλ = 4 you findA2 = �A1=2. Note that just the
ratio of the twoAi is determined: you can multiply all theAi by a constant and stay
in the same normal mode. This means that we are free to normalise the eigenvectors
as we choose. It is common to make them have unit modulus, in which case the
eigenfrequencies and eigenvectors are:

ω = r
k
m
; A = 1p

2

�
1
1

� ;
ω = 2

r
k
m
; A = 1p

5

�
2�1

� ;
In the first normal mode, the two masses swing in phase with thesame amplitude,

and the middle spring remains unstretched. This could have been predicted: we have
solved for a case wherem2 is twice the mass ofm1, and is attached to a wall by a
spring with twice the force constant. Therefore,m1 andm2 would oscillate with the
same frequency in the absence of the connecting spring.

In the second mode the two masses move out of phase with each other, andm1

has twice the amplitude ofm2.

6.4.1 Weak Coupling and Beats

Now consider a case where the two masses are equal,m1 = m2 = m, and the two
springs attaching the masses to the fixed walls are identical, k1 = k2 = k. From the
symmetry of the setup, you expect one mode where the two masses swing in phase
with the same amplitude, the central connecting spring remaining unstretched. In
the second mode, the two masses again have the same amplitude, but swing out of
phase, alternately approaching and receding from each other. This second mode will
have a higher frequency (why?).

If the spring constant of the connecting spring isk0 = εk, you should check that
applying the solution method worked through above gives thefollowing eigenfre-
quencies and normal modes:

ω1 = r
k
m
; A1 = 1p

2

�
1
1

� ;
ω2 = r(1+2ε) k

m
; A2 = 1p

2

�
1�1

� ;



60 6 Coupled Oscillators

When the connecting spring has a very small force constant,ε� 1, so that the
coupling is weak, the two normal modes have almost the same frequency. In this
case it’s possible to observebeatswhen a motion contains components from both
normal modes. For example, suppose you start the system fromrest by holding the
left hand mass with a small displacement to the right, sayd, keeping the right hand
mass in its equilibrium position, and then letting go.

A general solution for the motion has the form,

x(t) = c1A1cos(ω1t)+c2A2cos(ω2t)+c3A1sin(ω1t)+c4A2sin(ω2t):
Because the system starts from rest, you can immediately see(make sure you can!)
thatc3 = c4 = 0 in this case. Then the initial condition,

x(0) = �d
0

� ;
gives, �

d
0

�= c1p
2

�
1
1

�+ c2p
2

�
1�1

� ;
which is solved byc1 = c2 = d=p2. So, the motion is given by:

x1(t) = d
2
(cos(ω1t)+cos(ω2t));

x2(t) = d
2
(cos(ω1t)�cos(ω2t)):

We can rewrite the sum and difference of cosines as products,leaving:

x1(t) = dcos
�ω2�ω1

2
t
�

cos
�ω1+ω2

2
t
�;

x2(t) = dsin
�ω2�ω1

2
t
�

sin
�ω1+ω2

2
t
�:

Now you can see that each ofx1 andx2 has a “fast” oscillation at the average fre-
quency(ω1 +ω2)=2, modulated by a “slow” amplitude variation at the difference
frequency(ω2�ω1)=2. The displacements show the contributions of the two nor-
mal modes beating together, as illustrated in figure 6.2.

You can easily demonstrate beats by tying a length of cotton between two chairs
and hanging two keys from it by further equal-length threads. Each key is a simple
pendulum and the suspension thread provides a weak couplingbetween them. Start
the system by pulling one of the keys to one side, with the other hanging vertically,
and releasing, so that you start with one key swinging from side to side and the
other at rest. The swinging key gradually reduces its amplitude, and at the same
time the other key begins to move. Eventually, the first key will momementarily
stop swinging, whilst the second key has reached full amplitude. The process then
continues, and the swinging motion transfers back and forthbetween the two keys.
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Figure 6.2 Displacementsx1 andx2 as functions of time, starting with both masses at rest
andx1(0) = d, x2(0) = 0. The displacement curve forx2 is shown dashed. For this plot, the
ratio ε of the spring force constants of the coupling (central) spring and either of the outer
springs is 0:1. Time is plotted in units of the period of the lower frequency normal mode.


