Coupled Oscillators

In what follows, | will assume you are familiar with the sirepharmonic oscilla-
tor and, in particular, the complex exponential method fodifig solutions of the
oscillator equation of motion. If necessary, consult thésien section on Simple
Harmonic Motion in chapter 5.

6.1 Time Translation Invariance

Before looking at coupled oscillators, | want to remind yamttime translation
invariance leads us to use (complex) exponential time digrere in our trial solu-
tions. Later, we will see that spatial translation invaceieads to exponential forms
for the spatial parts of our solutions as well.

To examine the implication of time translation invariante enough to consider
a single damped harmonic oscillator, with equation of nmgtio

MX = —2MyX — Mu?X,

where the two terms on the right are the damping and restéoicgs respectively.
We can rearrange this to,

%4 2y%+ wdx = 0.
To solve this equation, we used an ansatz (or guess) of tihve for
x = Ae,

whereA andQ are in general complex (to get a physical solution you canthise
real or imaginary parts of a complex solution). The reasanwle could guess such
a solution lies in time translation invariance.

What this invariance means is that we don’t care about trgarodf time. It
doesn’t matter what our clock read when we started obsemviegystem. In the
differential equation, this property appears becausdiedependence enters only
through time derivativesiot through the value of time itself. In terms of a solution
X(t), this means that:

if x(t) is a solution, then so igt +-c) for any constant.

The simplest possibility is tha{t 4 c) is proportional tox(t), with some proportion-
ality constantf (c), depending o,

X(t+c) = f(o)x(t).
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6 Coupled Oscillators

We can solve this equation by a simple trick. We differeetiaith respect t@ and
then set = 0 to obtain
X(t) = Qx(t),

whereQ is just the value off (0). The general solution of this linear first order
differential equation is

X(t) = Ae™.

We often talk aboutomplexexponential forms becaug2 must have a non-zero
imaginary part if we want to get oscillatory solutions. letiarom now on | will let
Q =iw, so thatwis real for a purely oscillatory solution.

We can't just us@anyvalue we like forw. The allowed values are determined by
demanding thafd“ actually solves the equation of motion:

(—w? 4 2iyw+ wd) Aé™ = 0.

If we are to have a non-trivial solutioA,should not vanish. The factor in parentheses
must then vanish, giving a quadratic equation to determin&€he two roots of the
guadratic give us two independent solutions of the origieabnd order differential
equation.

6.2 Normal Modes

We want to generalise from a single oscillator to a set oflladors which can affect
each others’ motion. That is to say, the oscillatorscanepled

If there aren oscillators with positions; (t) fori = 1,...,n, we will denote the
“position” of the whole system by a vecta(t) of the individual locations:

X(t) = (Xxa(t),x2(t), ..., xn(t)).

The individual positions; (t) might well be generalised coordinates rather than real
physical positions.

The differential equations satisfied by thewill involve time dependence only
through time derivatives, which means we can look for a tirmaglation invariant
solution, as described above. This means all the oscilatarst have the same
complex exponential time dependené&!, wherew is real for a purely oscillatory
motion. The solution then takes the form,

A

A .
xty=| . [,

An

where theA; areconstantsThis describes a situation where all the oscillators move
with thesame frequencgyout, in general, different phases and amplitudes: thd-osci
lators’ displacements are in fixed ratios determined byAh€This kind of motion
is called anormal mode The overall normalisation is arbitrary (by linearity of the
differential equation), which is to say that you can muitipll the A; by the same
constant and still have the same normal mode.

Our job is to discover whiclw are allowed, and then determine the sefApf
corresponding to each allowea We will find precisely the right number of normal

modes to provide all the independent solutions of the seiftgfrential equations.
For n oscillators obeying second order coupled equations ther@endependent
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solutions: we will findn coupled normal modes which will give us 2eal solutions
when we take the real and imaginary parts.

Once we have found all the normal modes, we can consinygiossible motion
of the system as a linear combination of the normal modes. paoethis with
Fourier analysis, where any periodic function can be expdrat a series of sines
and cosines.

6.3 Coupled Oscillators

Take a set of coupled oscillators described by a set of coateéqs,...,g,. In
general the potentiad(q) will be a complicated function which couples all of these
oscillators together. Considemall oscillations about a position of stable equilib-
rium, which (by redefining our coordinates if necessary) ae take to occur when
g =0fori=1,...,n. Expanding the potential in a Taylor series about this point
we find,

e+

Vi =V(0)+ 3 5 o

By adding an overall constant ¥ we can choos& (0) = 0. Since we are at a
position of equilibrium, all the first derivative terms vahi So the first terms that
contribute are the second derivative ones. We define,

'+zzmm

_ LAY,
"= 0q;dq; |o

and drop all the remaining terms in the expansion. NoteKhat a constant sym-
metric (why?)n x n matrix. The corresponding force is thus

and thus the equations of motion are
Midi = - Kijq;,
]

fori=1,...,n. Here theM; are the masses of the oscillators, ahis a matrix of
‘spring constants’. Indeed for a system of masses connéstasgrings, with each
mass moving in the same single dimension, the coordinatebesaken as the real
position coordinates, and th&mis a (diagonal in this case) matrix of masses, while
K is a matrix determined by the spring constants. Be aware Vethat coupled
oscillator equations occur more generally (for examplelécteical circuits) where
the gis need not be actual coordinates but more general parandetsesbing the
system (known as generalised coordinates) and in thisMaardK play similar
roles even if they do not in actuality correspond to masaéssaring constants.
To simplify the notation, we will write the equations of marias a matrix equa-
tion. So we define,
M O --- O Kiz Kiz -+ Kin
v N S L

0 0 Mn Knl Kn2 Knn



6 Coupled Oscillators

Figure 6.1 Two coupled harmonic oscillators. The vertical dashedslimark the equilib-
rium positions of the two masses.

Likewise, letqg andq be column vectors,

01 (o]

02 . G2
q — : 3 q = :

On Gn

With this notation, the equation of motion is,
Mqg=-Kaq, or q:_M_qu7

whereM ~1 is the inverse oM. _
Now look for a normal mode solutiog,= Aé**, whereA is a column vector.
We havef = —u? g, and cancelling/®* factors, gives finally,

MK A =?A.

This is now areigenvalue equatiorrhe squares of the normal mode fregencies are
theeigenvaluesf M ~1K, with the column vectora as the correspondirgigenvec-
tors.

6.4 Example: Masses and Springs

As a simple example, let’s look at the system shown in figute Gmprising two
massesn; andm, constrained to move along a straight line. The masses aredoi
by a spring with force constakt, andm; (mp) is joined to a fixed wall by a spring
with force constank; (k2). Assume that the equilibrium position of the system has
each spring unstretched, and use the displacemeatslx, of the two masses away
from their equilibrium positions as coordinates. The fosoemassm is then

Fl = —k1X1 — k’(Xl — Xz)

and on massy
Fz = —k2X2— k’(Xz—Xl).

(Note that these follow from a potential of foivh= Tkix2 + 2K (X, — x1)2 + 2k»x3.)
You can check that Newton’s 2nd law thus implies, in matrisfo

m O X1 _ ki + K —K X1
0O m X ) —K ko + K X )

The eigenvalue equation we have to solve is:

("™ weiem) () =7 ()



6.4 Example: Masses and Springs 59

Now specialise to a case whare = m, mp, = 2m, k; = k, ko = 2k andk’ = 2k.
The eigenvalue equation becomes,

(5 D) (R)-%(R)

or, settingh = mw? /K,
a5 () -(6)
(

For there to be a solution, the determinant of the 2 matrix in the last equation
must vanish. This gives a quadratic equationNor

A2 —BA+4=0,

with rootsA = 1 andA = 4. The corresponding eigenfrequencies @re: /k/m
andw = 2,/k/m. For each eigenvalue, there is a corresponding eigenvefiti

A =1 you findA; = A1, and withA = 4 you findA; = —A;/2. Note that just the
ratio of the twoA; is determined: you can multiply all th by a constant and stay
in the same normal mode. This means that we are free to neeribk eigenvectors
as we choose. It is common to make them have unit modulus, iohwdase the
eigenfrequencies and eigenvectors are:

k 1/1
o= Vm A= 50)

k 1 2
o =25 A= &(4)

In the first normal mode, the two masses swing in phase witbdiree amplitude,
and the middle spring remains unstretched. This could hege predicted: we have
solved for a case wherg, is twice the mass afry, and is attached to a wall by a
spring with twice the force constant. Therefamg,andm, would oscillate with the
same frequency in the absence of the connecting spring.

In the second mode the two masses move out of phase with daeh abdmy
has twice the amplitude ail,.

6.4.1 Weak Coupling and Beats

Now consider a case where the two masses are equat m, = m, and the two
springs attaching the masses to the fixed walls are idenkical k, = k. From the
symmetry of the setup, you expect one mode where the two siassag in phase
with the same amplitude, the central connecting spring @ unstretched. In
the second mode, the two masses again have the same ampitideing out of
phase, alternately approaching and receding from each dthis second mode will
have a higher frequency (why?).

If the spring constant of the connecting sprind(is= €k, you should check that
applying the solution method worked through above givesalewing eigenfre-
guencies and normal modes:

k
W = 57 Al —

/ k



60

6 Coupled Oscillators

When the connecting spring has a very small force constaatl, so that the
coupling is weak, the two normal modes have almost the saegaiéncy. In this
case it's possible to obsereatswhen a motion contains components from both
normal modes. For example, suppose you start the systenréstrby holding the
left hand mass with a small displacement to the right,cséseeping the right hand
mass in its equilibrium position, and then letting go.

A general solution for the motion has the form,

X(t) = c1A1cogwt) + CoA2cogupt) 4+ C3A1Sin(wat) 4 C4A2 SNyt ).

Because the system starts from rest, you can immediatel{nsdes sure you can!)
thatcz = ¢4 = 0 in this case. Then the initial condition,

x0=({).
(6)=350)+ 5 (),

which is solved byc; = ¢, = d/+/2. So, the motion is given by:

gives,

xi(t) = (coqunt) 4+ cogwpt)),

o Nl

X(t) = cogwyt) — cogwpt)).

5!
We can rewrite the sum and difference of cosines as prodeaisng:
. W — Wy W+
xi(t) = dcos( > t) cos( > t),

W_M09%M+WQ.

Xo(t) = dsin(

Now you can see that each »f andx; has a “fast” oscillation at the average fre-
quency(w; + ) /2, modulated by a “slow” amplitude variation at the diffezen
frequency(w, — wq)/2. The displacements show the contributions of the two nor-
mal modes beating together, as illustrated in figure 6.2.

You can easily demonstrate beats by tying a length of cotébmwden two chairs
and hanging two keys from it by further equal-length thredgksch key is a simple
pendulum and the suspension thread provides a weak colyg@iageen them. Start
the system by pulling one of the keys to one side, with therdihaging vertically,
and releasing, so that you start with one key swinging frode $0 side and the
other at rest. The swinging key gradually reduces its aogdif and at the same
time the other key begins to move. Eventually, the first kely mbmementarily
stop swinging, whilst the second key has reached full aomiit The process then
continues, and the swinging motion transfers back and fmtiveen the two keys.
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Figure 6.2 Displacements; andxy as functions of time, starting with both masses at rest
andx1(0) = d, x2(0) = 0. The displacement curve fg is shown dashed. For this plot, the
ratio € of the spring force constants of the coupling (central)repand either of the outer
springs is OL. Time is plotted in units of the period of the lower frequgnormal mode.



