
7
Normal Modes of a Beaded
String

7.1 Equation of Motion

The system we will describe is a string stretched to tensionT, carryingN beads, each
of massM, as shown in figure 7.1. The beads are equally spaced distancea apart,
and the ends of the string are distancea from the first and last bead respectively. We
will consider small transverse oscillations of the beads, with the ends of the string
held in fixed positions.

If the displacement of thenth bead isun, we can work out its equation of motion
by applying Newton’s second law. Referring to the lower partof figure 7.1, we find:

Mün = �T (sinψ+sinφ):
If the displacements are all small, then

sinψ� un�un�1

a
; and sinφ� un�un+1

a
:

Applying this approximation, the equations of motion are

ün = T
Ma

(un�1�2un+un+1) :
You get the same equation for longitudinal oscillations of aone-dimensional line of
masses connected by identical springs, withC=M replacingT=Ma, whereC is the
spring constant of each spring.
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Figure 7.1 Transverse oscillations of a beaded string.
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64 7 Normal Modes of a Beaded String

We can incorporate the boundary conditions, that the ends ofthe string are fixed,
by requiring

u0 = 0; uN+1 = 0:
You should convince yourself that these conditionsgive theright equations of motion
for the first andNth beads.

7.2 Normal Modes

We would like to find the normal modes of the beaded string. These are motions
where all the beads oscillate with the same angular frequency ω:

un = Aneiωt ;
for some set of coefficientsAn. Substituting in the equation of motion gives,

ω2An = T
Ma

(�An�1+2An�An+1): (7.1)

This is a recurrence relationfor the An — it is a discrete form of a differential
equation. The boundary conditions are now incorporated as,

A0 = AN+1 = 0:
We could solve for theAn by viewing the recurrence relation as a matrix equation
determining the column vector of theAn’s, like we did for systems with one or
two degrees of freedom. Alternatively, we could apply knownmethods of solving
recurrence relations. Rather than do either of these things, we will use some physical
insight, allowing us almost to write down the solution with little effort. There are
two key points:� Suppose we actually had aninfinite line of beads on a string. The infinite

system has atranslation invariance. If you jump one step (or any integer
number of steps) left or right, the system looks the same. This will make it
easy to find the normal modes of the infinite system.� Each bead is connected to its two nearest neighbours only: the interaction is
local. In the equation of motion,un is affected only byun�1, un+1 andun

itself, so thenth bead’s displacement is affectedonly by the displacements
of its two neighbours. Thus, if you can find a combination of normal modes
of the infinite system which satisfiesA0 = AN+1 = 0, then you’ll have found
a mode of the finite system. You don’t care whatA�1, AN+2 and so on are
doing.

To repeat, we will look for normal modes by finding modes for aninfinite line of
beads and then selecting particular combinations of modes to satisfy the boundary
conditions that the ends of the finite string are fixed.

7.2.1 Infinite System: Translation Invariance

Suppose we have already found a mode for the infinite string, with some set of
displacement amplitudesAn.

Now shift the system one step to the left. The translation invariance tells us
it looks the same. This means that if theAn gave us a mode with frequencyω,
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the shiftedA0
n should give another mode with thesameω. That is, the new set of

amplitudes,
A0

n = An+1;
also give a mode.

Now let’s look for a translation invariant mode, which reproduces itself when we
do the shift. Since a mode is arbitrary up to an overall scale,this means,

A0
n = An+1 = hAn;

for some constanth, so that the new amplitudes are proportional to the old ones.
Applying the last relation repeatedly shows that,

An = hnA0;
whereA0 is arbitrary and sets the overall scale. Given this set ofAn, we can find the
corresponding angular frequencyω by substituting in the equation of motion in the
form it appeared in equation (7.1). We find,

ω2hnA0 = T
Ma

(�hn�1A0+2hnA0�hn+1A0):
Cancelling a common factorhnA0, leaves,

ω2 = T
Ma

(2�h� 1
h
): (7.2)

This shows thath and 1=h give the same normal mode frequency. Conversely, if the
frequencyω is fixed, the amplitudesAn must be an arbitrary linear combination of
the amplitudes forh and 1=h. That is,

An = αhn+βh�n;
whereα andβ are constants.

We will find it convenient to seth= eiθ. The relation givingω for a givenh in
equation (7.2) becomes a relation givingω for a givenθ according to,

ω2 = 4
T

Ma
sin2(θ=2) : (7.3)

The displacement of thenth bead is,

un = (αeinθ +βe�inθ)eiωt : (7.4)

7.2.2 Finite System: Boundary Conditions

The value ofθ is fixed by the boundary conditions, and this in turn fixesω. For the
string ofN beads with both ends fixed, we incorporate the boundary conditions by
requiring

u0 = 0; uN+1 = 0:
Theu0 = 0 condition requires thatα = �β, which makesun proportional to sin(nθ)
only, and the boundary condition at positionN+1 then imposes,

sin[(N+1)θ] = 0:
This last equation in turn gives

θ = mπ
N+1

; (7.5)

wherem is an integer which labels the modes.
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Figure 7.2 The six normal modes of a beaded string fixed at both ends carrying six beads.
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Figure 7.3 Repetition of normal modes for mode numbers greater than sixfor a string with
fixed ends carrying six beads. Modes 3, 11 and 17 are shown. A normal mode remains the
same if all the displacements are multiplied by a constant, including�1, so all three modes
shownare the same.

7.2.3 The Set of Modes

Observe that the linear combination of modes in equation (7.4) is just a sum of left-
and right-moving wavelike solutions for the infinite beadedstring. For the finite
string we are simply constructing a standing wave solution.This is just like finding
standing waves for guitar or violin strings or organ pipes, but now the system is
discrete rather than continuous.

Look at a string with six beads as an example. There are six degrees of freedom
and so we expect six modes asmruns from 1 to 6: these are shown in figure 7.2. The
figure also shows the continuous curves obtained by takingn to vary continuously
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Figure 7.4 Frequencies, in units of
p

T=Ma, of the normal modes of a beaded string
with five (N = 5, black squares) or twelve (N = 12, white squares) beads, showing that the
frequencies lie on a universal curve.

and lettingna be the position along the string. For larger values ofm the modes are
repeated (or you get zero displacements). This is shown in figure 7.3. Here you see
that the underlying curve of sin(nθ) changes, but the positions of the beads, which
determine the physical situation are unchanged.

The normal mode frequencies are found by inserting the valueof θ from equa-
tion (7.5) in equation (7.3) givingω in terms ofθ:

ωm = 2

r
T

Ma
sin

�
mπ

2(N+1)� :
In figure 7.4 are shown the normal mode frequencies for strings of five (N = 5) and
twelve (N = 12) beads, plotted as functions ofm=(N+1). They lie on a universal
curve when plotted in terms of this variable. The curve givesthe mode frequencies
of an infinite line of beads and the finite systems pick out subsets of allowed modes
which satisfy the boundary conditions.


