Normal Modes of a Beaded
String

7.1 Equation of Motion

The system we will describe is a string stretched to tenBjararryingN beads, each
of massM, as shown in figure 7.1. The beads are equally spaced disteaquart,
and the ends of the string are distaadeom the first and last bead respectively. We
will consider small transverse oscillations of the beadsh the ends of the string
held in fixed positions.

If the displacement of theth bead isu,, we can work out its equation of motion
by applying Newton’s second law. Referring to the lower péfigure 7.1, we find:

MU, = —T (sing+sing).
If the displacements are all small, then

. Up — Un— . Up—u
siny ~ ”T”l, and  simpx ”T”J’l.

Applying this approximation, the equations of motion are

T

Un = M_a(un—l — 2Un+ Unt1) |-

You get the same equation for longitudinal oscillations oha-dimensional line of
masses connected by identical springs, W@ftM replacingT /Ma, whereC is the
spring constant of each spring.

Tun—l Tunwtl

Figure 7.1 Transverse oscillations of a beaded string.
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7 Normal Modes of a Beaded String

We can incorporate the boundary conditions, that the entteddtring are fixed,
by requiring
Up = 07 UNy1 = 0.

You should convince yourself that these conditions giveitite equations of motion
for the first and\th beads.

7.2 Normal Modes

We would like to find the normal modes of the beaded string.s€rere motions
where all the beads oscillate with the same angular frequ@nc

Un :Anemx7

for some set of coefficient,. Substituting in the equation of motion gives,

A= o (Ao 1+ 20— Aoy, (7.1)

This is arecurrence relatiorfor the A, — it is a discrete form of a differential
equation. The boundary conditions are now incorporated as,

Ao=An;1=0.

We could solve for thé\, by viewing the recurrence relation as a matrix equation
determining the column vector of th&,’s, like we did for systems with one or
two degrees of freedom. Alternatively, we could apply knawethods of solving
recurrence relations. Rather than do either of these thingwiill use some physical
insight, allowing us almost to write down the solution wittilé effort. There are
two key points:

e Suppose we actually had anfinite line of beads on a string. The infinite
system has @ranslation invariance If you jump one step (or any integer
number of steps) left or right, the system looks the sames Wil make it
easy to find the normal modes of the infinite system.

e Each bead is connected to its two nearest neighbours ordyintéraction is
local. In the equation of motiony, is affected only byu,_1, uny1 andup
itself, so thenth bead’s displacement is affectedly by the displacements
of its two neighbours. Thus, if you can find a combination ofmal modes
of the infinite system which satisfidg = An,1 = 0, then you'll have found
a mode of the finite system. You don’t care what;, An;2 and so on are
doing.

To repeat, we will look for normal modes by finding modes forirfimite line of
beads and then selecting particular combinations of mamsattsfy the boundary
conditions that the ends of the finite string are fixed.

7.2.1 Infinite System: Translation Invariance

Suppose we have already found a mode for the infinite strinth some set of
displacement amplitudés,.

Now shift the system one step to the left. The translatiomuiawnce tells us
it looks the same. This means that if thg gave us a mode with frequency,
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the shiftedA, should give another mode with tlsamew. That is, the new set of
amplitudes,

A:‘I = Aﬂ+l7
also give a mode.
Now let’s look for a translation invariant mode, which reguges itself when we
do the shift. Since a mode is arbitrary up to an overall s¢hie means,

A:‘| = Aﬂ-l—l = hA’H
for some constant, so that the new amplitudes are proportional to the old ones.
Applying the last relation repeatedly shows that,
An = h"Ag,

whereA is arbitrary and sets the overall scale. Given this séi,pfve can find the
corresponding angular frequen@by substituting in the equation of motion in the
form it appeared in equation (7.1). We find,

Wh"Ag = Mla (—h"TAg+ 2h"Ag — KA.

Cancelling a common factdfAg, leaves,

T 1
P=_——(2—h-2). 7.2
W= (2-h— 1) (7.2)
This shows thalh and 1/h give the same normal mode frequency. Conversely, if the
frequencyw is fixed, the amplitudes,, must be an arbitrary linear combination of

the amplitudes foh and I/h. That is,
A, =ah"+ph™",

wherea andf} are constants. _
We will find it convenient to seh = €®. The relation givingo for a givenh in
equation (7.2) becomes a relation giviador a givend according to,

w2:4Mlasin2(9/2) : (7.3)

The displacement of theth bead is,
up = (ad"® + e ) dut, (7.4)

7.2.2 Finite System: Boundary Conditions

The value oM is fixed by the boundary conditions, and this in turn fix@s~or the
string of N beads with both ends fixed, we incorporate the boundary tiondiby
requiring

Up = 07 UNy1 = 0.

Theup = 0 condition requires that = — 3, which makesu, proportional to sifn6)
only, and the boundary condition at positida+ 1 then imposes,

sin(N+1)6]=0.
This last equation in turn gives
LS (7.5)
N+ '

wheremis an integer which labels the modes.
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Figure 7.3 Repetition of normal modes for mode numbers greater thaiosiastring with
fixed ends carrying six beads. Modes 3, 11 and 17 are shownrraionode remains the
same if all the displacements are multiplied by a constantuding—1, so all three modes
shownare the same.

7.2.3 The Set of Modes

Observe that the linear combination of modes in equatia) (g just a sum of left-
and right-moving wavelike solutions for the infinite beads#tdng. For the finite
string we are simply constructing a standing wave solutidis is just like finding
standing waves for guitar or violin strings or organ pipast, ow the system is
discrete rather than continuous.

Look at a string with six beads as an example. There are sitede@f freedom
and so we expect six modesrasuns from 1 to 6: these are shown in figure 7.2. The
figure also shows the continuous curves obtained by takitogvary continuously
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Figure 7.4 Frequencies, in units of/T /Ma, of the normal modes of a beaded string
with five (N = 5, black squares) or twelvél(= 12, white squares) beads, showing that the
frequencies lie on a universal curve.

and lettingna be the position along the string. For larger valuesxahe modes are
repeated (or you get zero displacements). This is shownunfig.3. Here you see
that the underlying curve of sinB) changes, but the positions of the beads, which
determine the physical situation are unchanged.

The normal mode frequencies are found by inserting the vafllefrom equa-
tion (7.5) in equation (7.3) giving in terms of6:

W = 2\/Mja5i”(2(TmJTr[1)) .

In figure 7.4 are shown the normal mode frequencies for dririgive (N = 5) and
twelve (N = 12) beads, plotted as functionsmof (N+1). They lie on a universal
curve when plotted in terms of this variable. The curve giesmode frequencies
of an infinite line of beads and the finite systems pick out stgaf allowed modes
which satisfy the boundary conditions.
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