Physics Skills
Tim Freegarde
Physics skills

• BECOME A BETTER PHYSICIST…

• GRADUATE WITH A BETTER DEGREE CLASS…

• GENERAL AIMS:
 • identify physics in a physical situation
 • apply physical laws, logical deduction and mathematics
 • analyse qualitatively and quantitatively
 • compare theory with experiment, or predict what happens next
Physics skills

I. IDENTIFY PHYSICS IN A PHYSICAL SITUATION…

• parse the question
• draw a diagram representing the information provided

• QUESTION TERMINOLOGY
 • State, What, Identify, Express, Find
 • *no derivation required*
 • Explain, Describe, How
 • *in words…*
 • Derive, Prove, Show that, Determine
 • *state assumptions, proceed logically*
 • Evaluate, Indicate, Calculate, Estimate
 • *numbers, with clear assumptions*
 • Sketch
 • *as it says…*
2. APPLY PHYSICAL LAWS, LOGICAL DEDUCTION & MATHEMATICS

• STRUCTURE OF A DERIVATION
 • diagram
 • establishes problem, defines parameters, visualizes question
 • fundamental principles
 • physical laws and general assumptions
 • particular assumptions
 • approximations, values, regime limitations
 • mathematics
 • tautologies which introduce no new physical information but

EXERCISE
Calculate the electric potential established by the nucleus of a hydrogen atom at the average distance \(r_0 = 5.29 \times 10^{-11} \) m of the atom's electron (taking \(V = 0 \) at infinite distance).

The force \(F \) exerted upon a charge \(q \) by a charge \(+e \) at a distance \(r \) is given by Coulomb's law

\[
F = \frac{q \cdot e}{4\pi \varepsilon_0 r^2}
\]

The potential energy of two charges is given by the work done to bring them together, where the work done against a force is equal to the force \(\cdot \) distance moved against the force

\[
\Delta E = E_i - E_f = F \cdot \Delta r
\]

The potential energy of our two charges, when separated by \(r_0 \), is therefore given by

\[
E_{\text{pot}} = E_f - E_i = \sum F \cdot \Delta r
\]

where the force \(F \) depends upon the separation \(r \). We must therefore cast this as an integral,

\[
E_{\text{pot}} = \frac{q \cdot e}{4\pi \varepsilon_0} \int_0^{r_0} F \, dr
\]

which, inserting the particular form of the force from Coulomb's law, gives
Physics skills

2. APPLY PHYSICAL LAWS, LOGICAL DEDUCTION & MATHEMATICS

- **STRUCTURE OF A DERIVATION**
 - diagram
 - establishes problem, defines parameters, visualizes question
 - fundamental principles
 - physical laws and general assumptions
 - particular assumptions
 - approximations, values, regime limitations
 - mathematics
 - tautologies which introduce no new physical information but

- **DERIVATIONS SHOULD BE**
 - logical
 - rigorous

EXERCISE

Calculate the electric potential established by the nucleus of a hydrogen atom at the average distance $(a_0 = 5.29 \times 10^{-11} \text{ m})$ of the atom's electron (taking $V = 0$ at infinite distance).

The force F exerted upon a charge q by a charge $+e$ at a distance r is given by Coulomb's law:

$$F = \frac{q e}{4\pi\epsilon_0 r^2}$$

The potential energy of two charges is given by the work done to bring them together, where the work done between a thens to each of the forces F distance should be zero.

The electric potential V is defined as the electrostatic potential energy per unit charge, i.e.

$$V = \frac{E - q}{q}$$

Thus,

$$V_n = \frac{e}{4\pi\epsilon_0 a_0}$$

and we may assume that $V = 0$ at $r = \infty$, so

$$V_n = 0$$

hence

$$V_n = \frac{-e}{4\pi\epsilon_0 a_0}$$

Given the specific values:

- $e = 1.60 \times 10^{-19} \text{ C}$
- $E = 8.85 \times 10^{-12} \text{ F.m}^{-1}$
- $a_0 = 5.29 \times 10^{-11} \text{ m}$

we obtain

$$V_n = \frac{1.6 \times 10^{-19}}{4\pi \times 8.85 \times 10^{-12} \times 5.29 \times 10^{-11}} \text{ C.m}$$

I.e.

$$V_n = 27.2 \text{ V}$$
Physics skills

3. **ANALYSE QUALITATIVELY AND QUANTITATIVELY**

 - **APPLY and USE CONSISTENTLY:**
 - vectors
 - symbols/variables
 - definite integrals (especially >1D)
 - differentiation (especially products, powers, functions of functions)

 - **SKETCH or PLOT GRAPHS**
 - label axes
 - show asymptotes/trends
 - plot specific values
 - label important features
Physics skills

4. COMPARE THEORY WITH EXPERIMENT or PREDICT WHAT HAPPENS NEXT

- NUMERICAL VALUES AND INTERPRETATION
 - units
 - precision, uncertainty

- COMMENTARY
 - required to explain logic, assumptions, interpretation, conclusions
 - clarity and accuracy of language essential

http://phyweb.phys.soton.ac.uk/quantum/writing.php
Physics skills

- COURSEWORK RECORD CARD
 - feedback and progress
 - attach to every set of coursework

- RESOURCES
 - advice in lab manuals
 - examples in every textbook

 www.southampton.ac.uk/~evans/PHYS-Skills/