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SEMESTER 1 EXAMINATION 2014-2015

WAVE PHYSICS

Duration: 120 MINS (2 hours)

This paper contains 9 questions.

Answers to Section A and Section B must be in separate answer books

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Section A

A1. Explain what are meant by travelling and standing waves. [ 2 ]

Write an expression for a sinusoidal example of a travelling wave, and derive

from it the phase velocity. [ 2 ]

A2. Explain, with examples, the difference between transverse and longitudinal

waves. [ 3 ]

Give an example of a wave that is neither transverse nor longitudinal. [ 1 ]

A3. Outline the Huygens description of wave propagation. [ 2 ]

Explain how the Huygens description can be used to calculate the diffraction

pattern of an illuminated object. [ 2 ]

A4. Explain how dispersion is apparent in the evolution of a propagating wavepacket,

and in the phase velocities of its sinusoidal components. [ 2 ]

The dispersion relation between the angular frequency ω and wavenumber k

for the quantum wavefunction of a particle of mass m is

ω =
h̄

2m
k2.

Determine the phase velocity and the group velocity for a wavepacket of (mean)

wavenumber k. [ 2 ]

A5. Outline the bandwidth theorem, and explain its significance for both classical

and quantum mechanical wave motions. [ 4 ]

Copyright 2015 c© University of Southampton Page 2 of 10



3 PHYS2023W1

Section B

B1. Figure (a) shows how a wave in shallow water may be analysed by dividing

the water into vertical slices of rest width δx and considering the motions

of the slices. Here, x is the horizontal distance, h(x) the water height, ξ1,2

the displacements of the slice edges from their rest positions, and vx1,2 the

horizontal velocities of the edges. Motion is assumed limited to the x− h plane.

(a) (b)

(a) By assuming that the volume of water within each slice remains fixed, show

that h(x) (δx + ξ2 − ξ1) will be constant, and hence that

∂h
∂t
= −h0

∂vx

∂x
,

where h0 is the undisturbed height. Make clear any other assumptions. [ 4 ]

(b) Write an expression for the hydrostatic pressure P1,2(z) upon the edges of

the slice, as shown in Figure (b) above. By considering the force upon a

vertically thin element of the slice at height z, hence show that

∂vx

∂t
= −g

∂h
∂x
,

where g is the acceleration due to gravity. [ 3 ]

(c) Hence derive the wave equation for shallow-water waves

∂2h
∂t2 = gh0

∂2h
∂x2 . [ 3 ]
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(d) By substituting into the wave equation a trial travelling wave of the form

h(x, t) = h(u) where u ≡ x − vpt, show that the phase velocity will be

vp = ±
√
gh0. [ 3 ]

(e) Explain what happens as the straight wavefronts of ocean swell approach

a gently shelving shoreline. [ 3 ]

(f) Given that the energy density of shallow-water waves per unit horizontal

(seabed) area is

E = ρg(h − h0)2,

determine the power per unit length along the wavefront. [ 2 ]

(g) Hence explain how a wave originating in the deep ocean is transformed as

it approaches the shore to become a tsunami. [ 2 ]
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B2. (a) Explain the principles of Fourier synthesis and analysis, and what is meant

by the Fourier transform. [ 4 ]

(b) A function ψ(x) that is antisymmetrical about x = 0 and periodic with

interval X may be written as

ψ(x) =
∞∑

m=1

am sin
(

2πm
X

x
)

(1)

where the Fourier components am are given by

am =
2
X

∫ X/2

−X/2
ψ(x) sin

(
2πm

X
x
)

dx.

Show that, for a square wave of interval X, defined for |x| < X/2 by

ψ(x) = −a0 (|x| < 0)

ψ(x) = a0 (|x| > 0),

the Fourier components are given by

am =
4a0

πm
sin2

(mπ
2

)
. [ 4 ]

(c) By integrating equation (1) over the range from x = −X/4 to x, show that

a symmetrical triangular wave ϕ(x′) of period X, with a maximum at x = 0
and peak-to-peak amplitude 2b0 may be written as

ϕ(x′) =
∞∑

m=1

bm cos
(

2πm
X

x′
)
,

where

bm =
8b0

(πm)2 sin2
(mπ

2

)
. [ 6 ]

(d) The string of a musical instrument is plucked at its midpoint x = 0 in such

a way that it is released from rest with a maximum displacement b0 at time

t = 0. The subsequent motion may be written as

ϕ(x, t) =
∞∑

m=1

bm cos
(

2πm
X

x
)

cos
(

2πm
T

t
)
,
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where T is the period of the fundamental oscillation, the coefficients bm

are as defined in part (c), and the phase velocity for waves on the string is

given by vp = X/T .

Show that, at an arbitrary point x, the velocity of the string ∂ϕ/∂t may

be written as a superposition of two square waveforms of period T and

amplitude ±2b0/T with a relative delay of (2x/X)T . [ 4 ]

(e) Hence sketch the velocity of the string at point x = X/16 for −T ≤ t ≤ T . [ 2 ]
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B3. (a) Explain what is meant by the impedance of a medium in the context of

wave propagation. [ 2 ]

(b) The continuity conditions for electromagnetic waves normally incident

upon the plane interface between two media are

E1 = E2

H1 = H2,

where E1,2 and H1,2 are the total electric and magnetic field strengths in the

two media at the interface and, for a wave component travelling in direction

n̂, the magnetic field strength H = (1/Z) E × n̂, where Z is the impedance

of the medium.

By considering wave components that are incident upon, reflected by and

transmitted through the interface, derive the amplitude reflection coefficient

for electromagnetic waves in terms of the impedances Z1 and Z2. [ 3 ]

(c) Deduce further expressions for the ratio |Et/Ei| of the transmitted and

incident electric fields Et,i, and for the ratio |Ht/Hi| of the transmitted and

incident magnetic fields Ht,i. [ 2 ]

(d) Show that, if Z2 � Z1, the ratio |Ht/Hi| ≈ 0, and hence that the incident

and reflected magnetic field components must be equal and opposite.

Show that, conversely, if Z2 � Z1, the electric field components must

cancel. [ 3 ]

(e) Newton observed his ’rings’ by placing a lens of refractive index η = 1.55
onto a block of the same material so that its lower surface of radius of

curvature R = 2.3 m touched the plane surface of the glass block. When

the lens was illuminated from above with yellow-orange light, and viewed

from the same direction, a concentric series of finely spaced bright and

dark rings was observed.
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Explain the origin of the observed ring pattern, and the reason why the

centre of the fringe pattern was dark rather than bright. [ 5 ]

(f) Show that, if the wavelength of illumination is λ, the radius rn of the nth

dark fringe will be approximately given by

rn ≈
√

nRλ. [ 3 ]

You may neglect the effects of refraction throughout.

(g) Newton measured the radius of the fifth dark ring to be 2.57 mm. Deduce

the wavelength of the orange-yellow light. [ 2 ]
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B4. A source of waves of angular frequency ωs moves with a velocity v and, at time

t = 0, is at a position r0 relative to a stationary observer.

(a) Show that the distance from the source to the observer at time t � |r0|/|v|
will be given approximately by

r ≈ |r0| +
r0

|r0|
· vt. [ 2 ]

(b) Show therefore that if the wave leaving the source at time t is ψ(t), then

that seen by the observer will be proportional to

ψ

(
t − t0 −

r0

|r0|
·

v
c

t
)
,

where t0 = |r0|/c and c is the speed with which the wave propagates. [ 3 ]

(c) Hence show that the observed wave will have an angular frequency

ωs − δω, where
δω

ωs
=
vx

c
,

and vx is the component of the source’s velocity away from the observer. [ 3 ]

The source is an atom which, when at rest, emits or scatters photons of angular

frequency ω0. The atom emits a photon towards the observer, in whose frame

it has an energy h̄ω. The coordinate axes may be chosen so that the x axis

points from the source to the observer.

(d) By considering the total electronic and kinetic energy of the atom before

and after the emission of the photon, show that, if the x-component of the

atom’s velocity changes by δv when it emits the photon, conservation of

energy requires that

h̄ω = h̄ω0 − mvxδv,

where m is the mass of the atom and vx the mean component of its velocity

away from the observer. [ 4 ]
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(e) Show that, if momentum is conserved during the emission of the photon,

mδv = h̄ω/c. [ 2 ]

(f) Hence show that the observed angular frequency will be

ω = ω0

(
1 +

vx

c

)−1
,

and therefore that, if vx � c, the Doppler shift of the photon due to the

motion of the atom will again be

δω = ω − ω0 ≈ ω0
vx

c
. [ 3 ]

The Fraunhofer K line in the solar spectrum is due to absorption at wavelength

λ0 = 394 nm by Ca+ ions in the photosphere, where the temperature T is

around 5 000 K.

(g) Estimate the variation δλ in the wavelength of the K line that is due to

thermal motion of the Ca+ ions. The r.m.s. velocity component vx,rms for

a thermal distribution is given by v2
x,rms = kBT/m, where kB is Boltzmann’s

constant and the mass m of a Ca+ ion is 6.66×10−26 kg. [ 3 ]

You may assume that δλ/λ0 = δω/ω0.

END OF PAPER
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