Southampton School of Physics and Astronomy

Wave Physics PHYS 2023 Tim Freegarde

Sumatra-Andaman earthquake 2004

26 DEC 2004 04:15Z

FROM: UN ENVOY SUMATRA TO: CHIEF SCI ADVISOR LONDON MAGNITUDE 9.1 EARTHQUAKE ALONG INDIA-BURMA SUBDUCTION ZONE. 1200KM FAULT LEAVING KM-WIDE RIDGES AND TROUGHS. 30 CUBIC-KM WATER DISPLACED. NOAA SATELLITE RADAR REPORTS +2HRS WAVE HEIGHT 0.6M +3HRS WAVE HEIGHT 0.4M PLS ADVISE ++ UTMOST URGENCY ++

Tsunami Inundation Mapping Efforts NOAA/PMEL - UW/JISAO

Sumatra-Andaman earthquake 2004

26 DEC 2004 04:15Z

FROM: UN ENVOY SUMATRA TO: CHIEF SCI ADVISOR LONDON MAGNITUDE 9.1 EARTHQUAKE ALONG INDIA-BURMA SUBDUCTION ZONE. 1200KM FAULT LEAVING KM-WIDE RIDGES AND TROUGHS. 30 CUBIC-KM WATER DISPLACED. NOAA SATELLITE RADAR REPORTS +2HRS WAVE HEIGHT 0.6M +3HRS WAVE HEIGHT 0.4M PLS ADVISE ++ UTMOST URGENCY ++

Tsunami Inundation Mapping Efforts NOAA/PMEL - UW/JISAO

- NOAA radar was experimental
- data analysis and wave simulation were not possible until days later
- 275,000 people perished

What is a wave?

Wave examples

Wave properties

Wave phenomena

• Wave mechanisms

Water waves

www.fluidconcept.co.uk/Images/Uploads/capetown1-400-279.jpg

heguardian.com

- Ocean waves
- Severn bore
- Kelvin ship wake
- Tsunami

© Reuters / Mainichi Shimbun

Aerodynamic waves

David Aknai

The Weather Network

- Mountain lee waves
- Kelvin-Helmholtz atmospheric waves
- Shock diamonds / Mach discs

Electromagnetic waves

aliexpress.com

- Light
- Radio
- Gamma radiation

Acoustic waves

Volfgang Morode

http://www.scienceinthenews.org.uk/

- Ultrasound
- Sonar

Acoustic waves

Nolfgang Moroder

http://www.scienceinthenews.org.uk/

- Ultrasound
- Sonar
- Music

Chemical waves

N Derstine, J Landis (2009) https://www.youtube.com/watch?v=IBa4kgXI4Cg

• Belousov-Zhabotinsky (autocatalytic) reaction: $Br_2 \rightarrow 2 Br^+ \rightarrow Br_2 \rightarrow ...$ W Jahnke, A T Winfree, J Chem Ed **68**, 320 (1991)

Invictilast Galbasy 2014 © BBC reproduced without permission

• Stadium waves started by ~dozen people, speed ~12 m s⁻¹, width 6 to 12 m I Farkas, D Helbing, T Vicsek, Nature **419**, 131 (2002)

© Walter Späth, photopage.de

James Hare et al, University of Manitoba

• Stadium waves started by ~dozen people, speed ~12 m s⁻¹, width 6 to 12 m

I Farkas, D Helbing, T Vicsek, Nature **419**, 131 (2002)

• Prairie dogs' *jump-yip* displays used to test neighbours' awareness

J F Hare, K L Campbell, R W Senkiw, Proc Roy Soc B **281** (1777), 20132153 (2014)

© Walter Späth, photopage.de

P Zitterbart et al, University of Erlangen-Nuremberg

- Stadium waves started by ~dozen people, speed ~12 m s⁻¹, width 6 to 12 m I Farkas, D Helbing, T Vicsek, Nature **419**, 131 (2002)
- Prairie dogs' *jump-yip displays* used to test neighbours' awareness

J F Hare, K L Campbell, R W Senkiw, Proc Roy Soc B **281** (1777), 20132153 (2014)

• Emperor penguins form dense (triangular lattice) *huddle* to conserve heat R C Gerum, B Fabry, C Metzner, M Beaulieu, A Ancel, D P Zitterbart, New J Phys **15**, 125022 (2013)

🛇 Walter Späth, photopage.de

Life in the Undergrowth © David Attenborough / BBC (2005)

• Stadium waves started by ~dozen people, speed ~12 m s⁻¹, width 6 to 12 m

I Farkas, D Helbing, T Vicsek, Nature **419**, 131 (2002)

• Prairie dogs' *jump-yip displays* used to test neighbours' awareness

J F Hare, K L Campbell, R W Senkiw, Proc Roy Soc B **281** (1777), 20132153 (2014)

- Emperor penguins form dense (triangular lattice) *huddle* to conserve heat R C Gerum, B Fabry, C Metzner, M Beaulieu, A Ancel, D P Zitterbart, New J Phys **15**, 125022 (2013)
- Malaysian giant honey bees perform wave to confuse and deter prey

G Kastberger, E Schmelzer, I Kranner, PLoS ONE 3 (9), e3141 (2008)

What is a wave?

Wave examples

• Wave properties

Wave phenomena

• Wave mechanisms

Wave Physics

	general wave phenomena	
WAVE EQUATIONS & SINUSOIDAL SOLUTIONS	wave equations, derivations and solution	-
	sinusoidal wave motions	
	complex wave functions	
	Huygens' model of wave propagation	
WAVE PROPAGATION	interference	
	Fraunhofer diffraction	
	longitudinal waves	
		1.00
BEHAVIOUR AT INTERFACES	continuity conditions	- 23
INTERFACES	boundary conditions	1
	linearity and superpositions	1000
SUPERPOSITIONS	Fourier series and transforms	
	waves in three dimensions	- 200
	waves from moving sources	
FURTHER TOPICS	operators for waves and oscillations	
	further phenomena and implications	

http://www.avcanada.ca/albums/displayimage.php?album=topn&cat=3&pos=7

Wave Physics

LECTURES	I single + I double lecture each week lecture notes and directed reading	
CLASSES	once a week (Tuesday I o'clock) identify difficulties beforehand!	
	weekly sheets of exercises	
COURSEWORK	hand in on level 3	20%

- principal characteristics of waves and wave propagation
- optics, sound, musical instruments, quantum waves
- introduction to electromagnetic waves, quantum mechanics
- a few diversionary examples...

Wave Physics resources

You should expect to make use of:

- lectures, hand-outs and your own lecture notes
- textbooks some suggestions in following slide
- exercises and classes:

 for handouts, links and other material, see http://phyweb.phys.soton.ac.uk/quantum/phys2023.php

Wave Physics 'feedback'

To help you assess your progress and improve:

- weekly coursework will be returned with marks and comments
- weekly problems classes offer individual help
- tutors can give additional help
- some past exam papers have model answers
- lecturer 'at home': Tuesdays 4:00-5:00
- email me!

 for handouts, links and other material, see http://phyweb.phys.soton.ac.uk/quantum/phys2023.php

Textbooks

Textbooks

Freegarde Introduction to the Physics of Waves written for THIS course!

ECTURES ON

Crawford Waves

he late C. A. Costern

brilliant! (out of print)

s &•1/Have they library can lend paper and rehensevectronic copies

ions & hysices librarly bass some reference ble, but data and slim

French Vibrations & Waves

▶ quite good, concise

Vibrations

	IY.	
HYSICS SERI		

GAVIN PRETOR-PINNEY

THE WAVEWATCHER'S

COMPANION

King Vibrations & Waves ► good introduction

-			
Cou	leon (11/2/22
COU	ISON (& Jeffries	vvaves
	good	(out of pr	int)

Feynman *Lectures on Physics* excellent introduction: put on your Christmas list!

Pretor-Pinney Wavewatcher's Companion

brilliantly readable general account

Textbooks

waves

Freegarde Introduction to the Physics of Waves ► written for THIS course!

What is a wave?

Wave examples

Wave properties

Wave phenomena

• Wave mechanisms

http://www.avcanada.ca/albums/displayimage.php?album=topn&cat=3&pos=2

Wave Physics

Local/microscopic definition:

- a collective bulk disturbance in which what happens at any given position is a delayed response to the disturbance at adjacent points
 - speed of propagation is derived

	particles (Lagrange)	fields (Euler)
static	equilibrium	eg Poisson's equation
dynamic	SHM	WAVES

Electromagnetic waves

• vertical component of force

$$F_{\uparrow}(t) = q_2 \frac{q_1}{4\pi\varepsilon_0 r^3} a(t)$$

Electromagnetic waves

• vertical component of force

$$F_{\uparrow}(t) = q_2 \frac{q_1}{4\pi\varepsilon_0 r^3} a(t) - r/c$$

- delay may be due to propagation speed of force (*retarded potentials*)
- electric field = force per unit charge (q_2)

Gravitational waves

• vertical component of force

$$F_{\uparrow}(t) = Q_{2} \frac{m_{1} q_{1} q_{2}}{44 \pi x \epsilon_{0} r^{3}} a ((t - r)/c))$$

- delay thep to eptopatgation page tion of force (retarded potentials)
- gravitiational field ree frece parameter (m_2)
- centre of mass motion \rightarrow quadrupole radiation

Gravitational waves

- verticating hypersent of store even the function of the set of • separation few tens of kin
- delay due to propagation speed of notations per second
- stars coalesce after minutes gravitational field = force per unit mass (m_2) detector is laser interferometer several km in size
- centre of mass motion \rightarrow quadrupole radiation

Wave Physics

Local/microscopic definition:

- a collective bulk disturbance in which what happens at any given position is a delayed response to the disturbance at adjacent points
 - speed of propagation is derived

	particles (Lagrange)	fields (Euler)
static	equilibrium	eg Poisson's equation
dynamic	SHM	WAVES

Macroscopic definition:

- a time-dependent feature in the field of an interacting body, due to the finite speed of propagation of a causal effect
 - speed of propagation is assumed

Wave Physics

Local/microscopic definition:

- a collective bulk disturbance in which what happens at any given position is a delayed response to the disturbance at adjacent points
 - speed of propagation is derived

• What is the net force on the penguin?

$$\mathcal{F}=-rac{\partial\mathcal{P}}{\partial x}\delta x$$

• For an elastic penguin, Hooke's law gives

$$\mathcal{P}=-\mathcal{C}rac{\partial y}{\partial x}$$

• If the penguin has mass $m{m}$, Newton's law gives

$$\mathcal{F} = m \frac{\partial^2 q}{\partial t^2}$$

- where $m=
ho\,\delta x$

- rest position x
- separation δx
- displacement y

 \mathcal{P}

 \mathcal{C}

 ρ

- pressure
- elasticity
- density

First exercise sheet

Revision of mathematical prerequisites:

- sinusoidal functions and complex exponentials
- trigonometric identities
- differentiation and integration

 for handouts, links and other material, see http://phyweb.phys.soton.ac.uk/quantum/phys2023.php

Plucked guitar string

- displace string as shown
- at time t = 0, release it from rest
- ...What happens next?

Southampton School of Physics and Astronomy

Wave Physics PHYS 2023 Tim Freegarde

