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Section A

A1. Mountain lee waves are transverse (vertical) motions of the atmosphere when a

strong wind blows over a mountain or hill; they occur downwind of the mountain,

extend to all altitudes, and are beloved of glider pilots who use them to soar

to heights of many kilometres. The vertical motion of the atmospheric airmass

can be taken to be roughly sinusoidal,

ψ(x, t) = ψ0 cos(kx) = ψ0 cos(kx′ + ωt),

where ψ(x, t) is the vertical displacement of the airmass from its initial altitude,

x is its horizontal distance downwind of the mountain, x′ = x − vwindt is its

position within the moving airmass as it travels with speed vwind relative to the

ground, and ω = vwindk.

Show that the vertical velocity of the air at position x and time t is given by

vvert = −ψ0 vwind k sin(kx). [ 2 ]

The (element of the) airmass is defined by the coordinate x′, so its vertical velocity will be [ 2 ]

vvert =
∂ψ

∂t

∣∣∣∣
x′

= −ψ0 ω sin(kx′ + ωt) = −ψ0 vwind k sin[k(x − vwindt) + ωt] = −ψ0 vwind k sin(kx).

A glider requires the air to rise with a minimum speed of 1 m s−1 for it to remain

aloft. If vwind = 10 m s−1 and 2π/k = 5, 000 m, find the minimum amplitude ψ0

of the wave motion. [ 2 ]

Assuming that the glider can find the position of greatest vertical velocity, we require

∂ψ

∂t

∣∣∣∣max

x′
≡ ψ0 vwind k ≥ 1 m s−1

hence [ 2 ]

ψ0 ≥
1 m s−1

vwind k
=

1 m s−1 5, 000 m
10 m s−1 2π

≈ 80 m.
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A2. Describe the Doppler effect, and discuss two methods by which it may be

theoretically derived. [ 4 ]

The Doppler effect is the shift in frequency recorded when there is a relative motion between the

observer and the wave source. [ 2 ]

The classical derivation of the Doppler effect considers the progression of propagating wavefronts

relative to the motion of the source and observer, and establishes the times and positions when the

wavefronts and source or observer meet [1 and/or...]. The Doppler shift also emerges automatically

from the transformations of special relativity [1 and/or...], and from quantum-mechanical treatments, in

which waves have quantized energies and momenta, from the principles of conservation of energy and

momentum [1]. [ 2 ]

A3. Explain why a laser pulse must comprise a range of optical frequencies, and

describe how the frequency range is related to the length of the pulse. [ 4 ]

A single frequency waveform has a steady amplitude, so for the intensity to vary there must be different

frequency components whose relative phase, and hence the constructive or destructive nature of their

interference, will change with time. [ 2 ]

For a faster variation in intensity, the phase difference must evolve more quickly, requiring a greater

difference in frequency. The minimum bandwidth of the spectrum is therefore inversely proportional to

the pulse length. [ 2 ]

A4. The antenna for a stereo radio receiver comprises a metal rod (cut at the middle

for the connection to the radio), which acts as a resonator for radio waves of

frequency 100 MHz. By considering the boundary conditions at the ends of the

rod, and assuming the speed of electromagnetic waves along the rod to equal

the speed of light in vacuum, c, calculate the shortest total length of the rod. [ 3 ]

The antenna is symmetrical, so the boundary conditions will be the same at each end [1]. The length

of the rod must therefore be an integer number of half-wavelengths [1]. The shortest length is therefore

0.5c/100 MHz = 1.5 m [1]. [ 3 ]

At which other frequencies will the antenna also act as a resonator? [ 1 ]

The antenna will also be a resonator when the length is a higher integer multiple N of the half-
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wavelength, i.e. 0.5Nc/ f = 1.5 m where f is the frequency, giving f = N × 100 MHz. [ 1 ]

A5. Explain what are meant by the terms travelling and standing waves. [ 2 ]

Travelling waves are those which maintain a constant form that is simply translated through space as

time evolves [1]. Standing waves maintain a spatially fixed form, that is multiplied by an evolving function

of time [1]. [ 2 ]

Show, with an example, how travelling waves may be superposed to form a

standing wave, and vice-versa. [ 2 ]

It helps to take a sinusoidal or complex exponential wave:

A cos kx cosωt ≡
A
2

[cos(kx − ωt) + cos(kx + ωt)]

B cos(kx − ωt) ≡ B [cos kx cosωt + sin kx sinωt] .

[1 mark for each.] [ 2 ]
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Section B

B1. A coaxial cable comprises an inner conductor of radius a that lies concentrically

within a cylindrical outer conductor of radius b. The space between the two

conductors is filled with a non-magnetic dielectric of relative permittivity ε. The

capacitance and inductance per unit length, C and L, are given by

C =
2πε0ε

ln(b/a)
,

L =
µ0

2π
ln
(

b
a

)
.

(a) Sketch the geometry of the coaxial cable, indicating the voltages V(x, t)
and currents I(x, t), charges Q(x, t), and electric and magnetic fields

E(x, t) and B(x, t), for an element of length δx at position x and time t. [ 4 ]

[2 marks for each - electric field should also be shown] [ 4 ]

(b) Derive the relationship

C
∂V
∂t

= −
∂I
∂x
. [ 3 ]

From conservation of charge, with ±δQ the charge on each conductor in the element of length δx,

∂

∂t
δQ(x) = I(x) − I(x + δx). [ 1 ]

From the definition of capacitance per unit length,

δQ(x) = (C δx) V(x). [ 1 ]

Combining these equations and taking the limit as δx→ 0,

C
∂V
∂t

= lim
δx→0

I(x) − I(x + δx)
δx

= −
∂I
∂x
. [ 1 ]
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(c) Derive the relationship

L
∂I
∂t

= −
∂V
∂x
. [ 3 ]

From Faraday’s law, with δΦ the magnetic flux between the conductors in the element of length

δx,
∂

∂t
δΦ(x) = V(x) − V(x + δx). [ 1 ]

From the definition of inductance per unit length,

δΦ(x) = (L δx) I(x). [ 1 ]

Combining these equations and taking the limit as δx→ 0,

L
∂I
∂t

= lim
δx→0

V(x) − V(x + δx)
δx

= −
∂V
∂x
. [ 1 ]

(d) Hence derive the wave equation

∂2V
∂t2 =

1
LC

∂2V
∂x2 , [ 3 ]

Differentiating our first two expressions with respect to time and position respectively, we obtain

C
∂2V
∂t2 = −

∂2I
∂x∂t

L
∂2I
∂t∂x

= −
∂2V
∂x2

which may be combined to eliminate ∂2I/∂x∂t to give

∂2V
∂t2 = −

1
C
∂2I
∂x∂t

=
1

LC
∂2V
∂x2 .

[1 mark for each expression] [ 3 ]

and give an expression for the phase velocity of electromagnetic waves

along the cable. [ 1 ]

By inspection or substitution of a trial solution, we identify the phase velocity from the wave

equation as v = 1/
√

LC. [ 1 ]

(e) Given that the diameters of the inner and outer conductors are 1 mm and

5 mm respectively, and the space between them is filled with solid PTFE
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with a relative permittivity of 2.05, find the capacitance and inductance per

unit length. [ 4 ]

C =
2πε0ε

ln(b/a)
=

2π 8.85 × 10−12 2.05
ln(5/1)

= 70 pF m−1

L =
µ0

2π
ln
(

b
a

)
=

4π × 10−7

2π
ln
(

5
1

)
= 320 nH m−1.

[2 marks for each] [ 4 ]

(f) Hence determine the time taken for a signal to propagate along a 1 m

length of the cable. [ 2 ]

The phase velocity will be v = 1/
√

LC = 1/
√

70 10−12 × 320 10−9 = 2.11 × 108 m s−1. The time to

travel 1 m is hence 1 m/2.11 × 108 m s−1 = 4.8 ns. [ 2 ]
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B2. (a) Sketch and explain the operation of the Michelson interferometer. [ 5 ]

beam-splitter

mirror

mirror

compensation
plate

source

detector

[ 2 ]

The Michelson interferometer works by interfering two beams of light, obtained from the same

source by division of amplitude, which reach the detector by paths of different length. [ 1 ]

Collimated light from the source strikes the partially-reflecting beam-splitter. Part of the light

is transmitted, and passes to mirror A, which reflects it back along its path; the other part is

reflected by the beam-splitter, travels to mirror B, and again is reflected back. The two beams

are recombined at the beam-splitter, being respectively reflected and transmitted to reach the

detector. Depending upon the displacement of the movable mirror from the position of equal path

length xA = xB, there is a path difference 2(xB − xA) between the two routes, which results in

constructive or destructive interference according to the path difference. [ 2 ]

(The existence and rôle of the compensation plate need not be described.)

(b) The amplitude of the light transmitted by a Michelson interferometer may

be determined by summing the amplitudes resulting from the two routes

through the interferometer. Given that the partially-reflecting beamsplitter

divides incident light equally between the two paths, the difference in path

length between the two routes at normal incidence is s, and the rays of

wavelength λ make an angle θ to the mirror normals, sketch the geometry

and write complex exponential expressions for the relative amplitudes of

these two contributions. [ 4 ]
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[ 2 ]

The figure above shows a comparison of two paths through the instrument, at the same angle ϑ

to the mirror normals, via the two mirror positions M1 and M2; in reality, the two paths are followed

in separate arms of the instrument. The path difference will be the distance ABC = A’BC = s cosϑ,

where s is the path difference at normal incidence.

The two contributions to the final field amplitude may hence be written a0 and a0 exp(−iks cosϑ),
where the wavenumber k ≡ 2π/λ; equivalently, writing a ≡ a0 exp(−iks cosϑ/2), the contributions

may be written more symmetrically as

a exp(±iks cosϑ/2) . [ 2 ]

(c) Hence show that the overall intensity transmitted by the interferometer is

given by

It ∝ cos2
(

k s
2

cos θ
)
,

where It is the transmitted intensity and k = 2π/λ. [ 2 ]

The combined amplitude will be

a
[
exp(iks cosϑ/2) + exp(−iks cosϑ/2)

]
= 2a cos

(
ks cosϑ

2

)
, [ 1 ]

where for non-absorbing mirrors |2a| = 1.

The transmitted intensity – proportional to the square of the amplitude – will therefore be

It ∝ cos2
(

ks cosϑ
2

)
. [ 1 ]

(d) A Michelson interferometer is used to investigate the spectra of a number

of light sources, by recording the on-axis transmitted intensity It as a
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function of the path difference s. Sketch, and label with as much detail as

you can, the interferograms (recordings of It vs s) that would be obtained

when the light source is

(i) a single-frequency telecommunications laser with an infrared wave-

length of 1561.4 nm. [ 3 ]

(ii) a low-pressure potassium lamp, which principally emits two wavelengths

of 766.5 nm and 769.9 nm, taking them to be equal in intensity. [ 3 ]

(i) For a single frequency, It ∝ cos2 ks/2, with k = 2π/λ, so the interferogram will be regular

fringes of period λ = 1561.4 nm.

[ 3 ]

(ii) With two wavelengths λ1,2, the interferograms of the individual components will be super-

posed, i.e.

It ∝ cos2 k1s
2

+ cos2 k2s
2

where k1,2 = 2π/λ1,2. Since cos2 ϑ ≡ (1 + cos 2ϑ)/2, this gives

It ∝ 1 + (cos k1s + cos k2s)/2 = 1 + cos
(k1 + k2)s

2
cos

(k1 − k2)s
2

,

as shown schematically below.

[ 3 ]

Here, (k1 − k2)δs/2 = π, so δs = (1/λ1 − 1/λ2)−1, and s0 = 2δs.

The interval δs spans [(k1 + k2)δs/2]/(2π) ≈ δs/λ1,2 fringes.

For the potassium lines, δs = 174 µm, s0 = 347 µm and the interval shown spans 226 fringes.

(e) How is the transmission of the interferometer modified if the amplitude

transmission t and reflectivity r of the partially-reflecting beamsplitter are
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not equal? What happens to the fraction of light that is not transmitted by

the instrument? [ 3 ]

Even if r and t are not equal, the two paths nonetheless contribute equally to the output beam,

since each path involves one reflection and one transit through the beam-splitter. The visibility

and extinction of the fringe pattern observed is therefore unchanged (although its intensity will be

lower). [ 2 ]

(Note that this is not true of the reflected pattern, which is reduced in visibility.)

Light not transmitted by the instrument is reflected back to the source. [ 1 ]
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B3. (a) Explain what is meant by Fraunhofer diffraction, and give an example of its

rôle or occurrence. [ 4 ]

Fraunhofer diffraction is the effect upon a propagating wave of an opaque or refractive mask or

obstruction, when viewed in the image plane of the wave source – for example, when plane waves

are viewed from infinity. [ 2 ]

Examples include the use of diffraction gratings for spectroscopy, the limit upon the resolution

of an optical instrument due to the finite apertures of its optical elements, the vivid colours of

butterfly wings, x-ray diffraction analysis, and the patterns apparent when a small, distant source

is observed through a finely woven fabric. [ 2 ]

(b) Show from first principles that p(ϑ), the dependence upon angle of the

relative amplitude of light of wavelength λ, when diffracted by a slit of width

a, is proportional to the sinc function

p(ϑ) ∝
sin{πa

λ
sinϑ}

πa
λ

sinϑ
. [ 4 ]

We consider light, arriving at the slit as plane waves, passing via point X a distance x from the

slit centre, and proceeding at an angle ϑ to the distant observer. The path length differs from that

through the slit centre O by x sinϑ, corresponding to a phase difference

δϕ =
2π
λ

x sinϑ. [ 1 ]

The contribution to the diffracted amplitude is thus

a0 exp iδϕ = a0 exp
(

i
2π sinϑ

λ
x
)
. [ 1 ]

The total diffracted amplitude is found by summing the contributions via all points in the slit

p(ϑ) =

∫ a/2

−a/2
a0 exp

(
i
2π sinϑ

λ
x
)

dx
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=
a0

i 2π sinϑ
λ

[
exp

(
i
2π sinϑ

λ
x
)]a/2

−a/2

=
2a0

i 2π sinϑ
λ

exp
(
i 2π sinϑ

λ
a
2

)
− exp

(
−i 2π sinϑ

λ
a
2

)
2i

= a0a
sin πa sinϑ

λ
πa sinϑ

λ

as required. [ 2 ]

(c) Two long, transmitting slits, each of width a, are separated by a non-

transmitting region of width (d − a). Show that the Fraunhofer diffraction

pattern - i.e. the intensity distribution of the light diffracted by the slits at an

angle ϑ - is given by

I(ϑ) = I0

{
sinα
α

cos β
}2

when the slits are illuminated by a parallel beam of monochromatic light at

normal incidence. Here, α = (ka/2) sinϑ, β = (kd/2) sinϑ, k = 2π/λ, and

the constant I0 depends upon the incident intensity. [ 4 ]

p(ϑ) = a0

∫ − d
2 + a

2

− d
2−

a
2

exp i
2πx sinϑ

λ
dx + a0

∫ d
2 + a

2

d
2−

a
2

exp i
2πx sinϑ

λ
dx

= a0

(
exp−i

2π d
2 sinϑ
λ

+ exp i
2π d

2 sinϑ
λ

)∫ a
2

− a
2

exp i
2πx′ sinϑ

λ
dx′

= 2a0 cos
πd sinϑ

λ

∫ a
2

− a
2

exp i
2πx′ sinϑ

λ
dx′

= 2a0 cos
πd sinϑ

λ

[
exp i 2πy′ sinϑ

λ

i 2π sinϑ
λ

] a
2

− a
2

= 2a0a cos
πd sinϑ

λ

sin πa sinϑ
λ

πa sinϑ
λ

≡ 2a0a cos β
sinα
α

,
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where we have written x′ ≡ x ± d/2. Since the intensity is proportional to the square of the

amplitude, we have [ 3 ]

I(ϑ) ∝
{

sinα
α

cos β
}2

. [ 1 ]

(d) Sketch the intensity distribution when a = 10 µm, λ = 1 µm, and d ≈ 3a.

Your diagram should be labelled to indicate the scale of important features. [ 4 ]

[ 4 ]

[2 marks for figure, 2 marks for labelling - not shown here: I(ϑ), ϑ (or sinϑ), sinc function zeroes

at sinϑ = nλ/a, other fringe zeroes at sinϑ = (2n + 1)λ/6a.]

(e) Repeat your sketch for the special case d = a, and comment on the result. [ 4 ]

[ 2 ]

The case d = a corresponds to a single slit of width 2a. [ 2 ]
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B4. (a) Explain what is meant by dispersion. Give examples of practical manifes-

tations of dispersion, and of an application that exploits it. [ 5 ]

Dispersion describes the spreading of a wavepacket as it propagates, and corresponds to a

variation in the phase velocity as a function of the frequency of sinusoidal components. In a

dispersive system, the phase and group velocities will differ. [ 2 ]

Dispersion is apparent in the variation of refractive index with wavelength, apparent in rainbows,

chromatic aberrations in imaging systems and the dispersion of a spectrum by a prism. Pulses

from a laser will become longer as they propagate down an optical fibre (unless waveguide

effects compensate), and short electrical pulses will be distorted by electrical transmission lines.

Localized quantum particles appear to exhibit a range of momentum values. [ 2 ]

Dispersion by a prism can be used to produce an optical spectrum. The combination of dispersion

with waveguide dispersion allows dispersion-free optical fibres to be designed. [ 1 ]

(b) Show that the wave equation

i m
∂ψ

∂t
= −

∂2ψ

∂x2

where m is a constant, has complex exponential travelling wave solutions

of the form

ψ(x, t) = ψ0 exp [i(kx − ωt)] .

Explain the significance of the parameters k and ω, and show that the

dispersion relation between k and ω is given by mω = k2. [ 5 ]

Substitution of the trial form into the wave equation gives

im
∂

∂t

(
ψ0 exp i(kx − ωt)

)
= −

∂2

∂x2

(
ψ0 exp i(kx − ωt)

)
⇒ im(−iω)ψ0 exp [i(kx − ωt)] = k2ψ0 exp [i(kx − ωt)] ,

which is true for all values of x and t (so the trial form is a solution) provided that [ 2 ]

mω = k2 . [ 1 ]

Here, k is the wavenumber - the number of radians of phase per unit distance along the direction

of propagation of the periodic wave; ω is the angular frequency, or phase per unit time. [ 2 ]
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(c) What is meant by the phase and group velocities? Give, for the above

example, an expression for the phase velocity vp in terms of ω. [ 3 ]

The phase velocity is the velocity with which a wavefront of given displacement appears to

propagate. The group velocity is the velocity with which the overall amplitude of a wavepacket

– or the beat between two components – appears to propagate. [ 2 ]

When sinusoidal components are characterized by their frequency and wavenumber ω and k, the

phase velocity vp = ω/k. Here, mω = k2, so vp = k/m =
√

mω/m =
√
ω/m. [ 1 ]

(d) A travelling wave has two complex exponential components, equal in

magnitude, with frequencies ω0 ± δω and wavenumbers k0 ± δk. Show

that the wave may be written in the form

ψ(x, t) = ψ1 exp [i(k0x − ω0t)] cos(δk x − δω t)

and thus takes the form of a complex exponential travelling wave that is

modulated by a slowly-varying, real periodic function. [ 4 ]

The travelling wave described will be

ψ(x, t) = ψ0
(
exp{i[(k0 − δk)x − (ω0 − δω)t]} + exp{i[(k0 + δk)x − (ω0 + δω)t]}

)
. [ 1 ]

A little rearrangement gives [ 2 ]

ψ(x, t) = ψ0 exp [i(k0x − ω0t)] ×{
exp [i (δkx−δωt)] + exp [−i (δkx−δωt)]

}
= 2ψ0 exp [i (k0x−ω0t)] cos (δkx − δωt) ,

which is of the required form, with ψ1 ≡ 2ψ0. [ 1 ]

(e) By considering how δk depends upon δω, show that the phase velocity of

the wave differs from the group velocity of the modulating envelope by a

factor of two. [ 3 ]

From the dispersion relation of part (b),

(k0 ± δk)2 = m(ω0 ± δω) . [ 1 ]

so

(k0 + δk)2 = m(ω0 + δω)

(k0 − δk)2 = m(ω0 − δω)
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thus

(k0 + δk)2 − (k0 − δk)2 = m(ω0 + δω) − m(ω0 − δω) [ 1 ]

hence

4k0δk = 2mδω.

The speed of propagation of the modulation, δω/δk, is hence 2k0/m = 2
√
ω/m; this is the group

velocity, and is twice the previously calculated phase velocity. [ 1 ]

END OF PAPER
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