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Copyright 2018 v01 c© University of Southampton Page 1 of 18



2 PHYS2023W1

Section A

A1. Explain what are meant by the terms travelling and standing waves. [ 2 ]

Travelling waves are those which maintain a constant form that is simply translated through space as

time evolves [1]. Standing waves maintain a spatially fixed form, that is multiplied by an evolving function

of time [1]. [ 2 ]

Show, with a mathematical example, how travelling waves may be superposed

to form a standing wave, and vice-versa. [ 2 ]

It helps to take a sinusoidal or complex exponential wave:

A cos kx cosωt ≡
A
2

[cos(kx − ωt) + cos(kx + ωt)]

B cos(kx − ωt) ≡ B [cos kx cosωt + sin kx sinωt] .

[1 mark for each.] [ 2 ]

A2. What is meant by wave interference? [ 1 ]

Wave interference describes the addition of wave amplitudes or displacements when two or more waves

reach the same point at the same time. As the amplitude may be positive or negative, the waves may

interfere constructively or destructively; the intensity is therefore not the simple sum of the component

intensities. [ 1 ]

Describe how interference occurs in a Michelson interferometer, and outline

how and for what purpose such an instrument may be used. Illustrate your

answer with a simple diagram. [ 3 ]

[1 mark for diagram] [ 1 ]

Incident light is divided by the semi-reflecting mirror C, and reflected by mirrors A and B, before being

recombined at C to pass to the output. Depending upon the path difference 2δ between the two
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routes, the two corresponding contributions to the output will show interference, depending upon the

frequencies present. [ 1 ]

By recording the transmitted intensity as δ is scanned, we obtain information from which – by a Fourier

transform – the spectrum of the incident light may be obtained. [ 1 ]

A3. Explain what is meant by the impedance of a medium in the context of wave

propagation. [ 2 ]

The impedance is a measure of the resistance of the medium to disturbance by the process driving

the wave motion. It is related to the ratio of the two properties that are conserved at an interface, and

therefore determines the reflectivity at such a boundary: if the impedances are the same on both sides

of the interface, the wave is not reflected. [ 2 ]

A wave is incident at right-angles upon the interface between two media. Show,

with the aid of a formula, how the fraction of the wave power that is reflected

depends upon the impedances of the two media. [ 2 ]

The fraction of the wave power that is reflected is given by

R =

(
Z2 − Z1

Z2 + Z1

)2

.

where Z1,2 are the impedances of the two media. The fraction reflected is hence least when the

impedances are similar. [ 2 ]

A4. The energy density of a sound wave is, like other mechanical wave motions,

composed in part by the kinetic energy 1
2ρ(∂ξ/∂t)2 and in part by the potential

energy 1
2 E(∂ξ/∂x)2, where ξ is the longitudinal displacement at position x and

time t, ρ is the density of the medium and E its modulus of elasticity.

(a) By considering a sinusoidal sound wave of definite frequency, show that

these two contributions are equal. [ 2 ]

If ξ(x, t) = ξ0 cos(kx − ωt + ϕ), the kinetic energy density will be

T =
1
2
ρω2ξ2

0 sin2(kx − ωt + ϕ) [ 0.5 ]

and the potential energy density will be

U =
1
2

Ek2ξ2
0 sin2(kx − ωt + ϕ). [ 0.5 ]
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Since ω/k = vp =
√

E/ρ, we find that

ρω2 = Ek2

and hence the two energy contributions are equal. [ 1 ]

(b) Given that the acoustic intensity is equal to the product of mean energy

density and wave speed, find the amplitude of displacement for sound

waves in sea water that correspond to the limit of dolphin hearing,

10−14 W m−2 at a frequency of 50 kHz. The density of sea water may be

taken to be 1025 kg m−3, the modulus of elasticity E ≈ 2.3 × 109 Pa, and

the wave speed is given by v =
√

E/ρ. [ 2 ]

The wave intensity I is given by the product of the mean energy density and the wave speed –

that is,

I =

√
E
ρ
×

1
2
ρω2ξ2

0 =
√

Eρ
ω2ξ2

0
2

. [ 1 ]

This may be rearranged to give

ξ0 =

√
2I

ω2 √Eρ

so, with the values given,

ξ0 =

√
2 × 10−14 W m−2

(2π × 5 × 104 s−1)2
√

(2.3 × 109 Pa)(1025 kg m−3)
= 3.6 × 10−16 m. [ 1 ]

For the sound waves addressed here, the phase velocity vp =
√

E/ρ.

A5. What is meant by an operator in the context of wave motion? [ 2 ]

An operator is a mathematical operation that can be applied to a wavefunction to determine observable

properties of the wavefunction such as the frequency, wavenumber or bandwidth. The observable is

found by applying the operator to the wavefunction according to the general operator equation

Oψ(x, t) = Ôψ(x, t). [ 2 ]

Express the frequency and wavenumber operators ω̂ and k̂ in terms of differ-

ential functions and, for one of them, show that application to a complex expo-

nential travelling wave correctly yields the wave frequency and wavenumber. [ 2 ]
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For the sign convention that ψ(x, t) = ψ0 exp[i(kx − ωt)] has a positive frequency and wavenumber, the

operators are [0.5 for each] [ 1 ]

ω̂ = i
∂

∂t

k̂ = −i
∂

∂x
.

When applied to a complex exponential travelling wave, we find

Oψ0 exp[i(kx − ωt)] = i
{
−iωψ0 exp[i(kx − ωt)]

}
which reduces to

O = ω. [ 1 ]
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Section B

B1. (a) Making clear any assumptions, derive the equations governing the flow of

heat down a uniform, thin metal bar,

Q(x) = −κA
∂Θ

∂x

and
∂Θ

∂t
= −

1
CρA

∂Q
∂x
,

where A is the cross-sectional area of the bar, x is the coordinate

measured along its length, Θ(x) and Q(x) are respectively the temperature

and rate of heat flow along the bar, C is the specific heat capacity of the

metal, ρ its density and κ its thermal conductivity. [ 6 ]

We assume a 1-D geometry, e.g. a bar diameter that is small in comparison with the scale of the

temperature variations; and that no heat enters or leaves the edges of the bar. [ 1 ]

From the definition of the thermal conductivity κ, the magnitude of the heat Q flowing per unit

cross-sectional area per unit time is the product of κ and the longitudinal temperature gradient∣∣∣∣QA
∣∣∣∣ = κ

∣∣∣∣∂Θ

∂x

∣∣∣∣ . [ 1 ]

Heat flows from a hotter to a colder body, so if Q is positive in the direction of increasing x, the

negative sign is required. Inserting this, and multiplying through by A, gives the first result

Q(x) = −κA
∂Θ

∂x
. [ 1 ]

From the definition of the specific heat capacity, the heat δH required to raise the temperature of

a mass δm of the metal by δΘ is

δH = C δm δΘ, [ 1 ]

where the net heat flowing into an elemental section of length δx in time δt will be the difference

between that entering and that leaving,

δH = [Q(x) − Q(x + δx)] δt, [ 0.5 ]

and where the mass δm of the element will be

δm = A ρ δx. [ 0.5 ]

Combining these expressions, dividing by C δm δt and taking the limits as δt → 0 and δx → 0
gives the second result [ 1 ]

∂Θ

∂t
= lim

δt,δx→0

δΘ

δt
= lim

δt,δx→0

δH
C δm δt

= lim
δt,δx→0

[Q(x) − Q(x + δx)]
C δm

= lim
δt,δx→0

[Q(x) − Q(x + δx)]
C A ρ δx

= −
1

CρA
∂Q
∂x

.
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(b) Hence derive the diffusion wave equation

∂Θ

∂t
=

κ

Cρ
∂2Θ

∂x2 . [ 1 ]

We differentiate the first equation with respect to x to give ∂Q/∂x, and substitute the result into

the second equation,
∂Θ

∂t
= −

1
CρA

∂

∂x

[
−κA

∂Θ

∂x

]
=

κ

Cρ
∂2Θ

∂x2 . [ 1 ]

(c) Show that the diffusion wave equation does not have sinusoidal wave

solutions, but may be solved by complex exponential waves of the form

Θ(x, t) = Θ0 exp [i(kx − ωt)]

and derive the dispersion relation

k(ω) = ±(1 + i)

√
Cρ
2κ
√
ω. [ 5 ]

Substitution of a trial sinusoidal wave Θ(x, t) = Θ0 sin(kx − ωt + ϕ) gives

−ωΘ0 cos(kx − ωt + ϕ) = (−k2)
κ

Cρ
Θ0 sin(kx − ωt + ϕ) [ 0.5 ]

which may be rearranged to give

tan(kx − ωt + ϕ) =
Cρ
κ

ω

k2 . [ 0.5 ]

This can only be valid at particular combinations of x and t, so the trial form is not a solution to the

diffusion wave equation. [ 1 ]

Substitution of the trial complex exponential wave Θ(x, t) = Θ0 exp [i(kx − ωt)] gives

−iωΘ0 exp [i(kx − ωt)] = (−k2)
κ

Cρ
Θ0 exp [i(kx − ωt)] [ 1 ]

which may be rearranged to give

k2 = i
Cρ
κ
ω [ 1 ]

which, if satisfied by ω and k, is valid for all x and t.

The dispersion relation for k in terms of ω is obtained by taking the square root of the above

expression,

k(ω) = ±(1 + i)

√
Cρ
2κ
√
ω. [ 1 ]
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(d) Hence derive the real, forward-travelling solution of the form

Θ(x, t) = Θ0 cos(±k0x − ωt + ϕ) exp(∓k0x),

and show that k0 =
√

Cρω/(2κ). [ 4 ]

A real forward-travelling solution may be obtained by superposing solutions for +ω and −ω with

the positive choice of sign of the root in the expression for k [1 mark for either of first two lines,

then 1 mark per line], [ 3 ]

Θ(x, t) = Θ0 exp

[
i

(
+(1 + i)

√
Cρ
2κ
√
ωx − ωt

)]
+ Θ0 exp

[
i

(
+(1 + i)

√
Cρ
2κ
√
−ωx + ωt

)]

= Θ0

{
exp

[
i

(
+(1 + i)

√
Cρ
2κ
√
ωx − ωt

)]
+ exp

[
i

(
+(i − 1)

√
Cρ
2κ
√
ωx + ωt

)]}

= Θ0 exp

(
−

√
Cρω
2κ

x

){
exp

[
i

(
+

√
Cρω
2κ

x − ωt

)]
+ exp

[
i

(
−

√
Cρω
2κ

x + ωt

)]}

= 2Θ0 exp

(
−

√
Cρω
2κ

x

)
cos

(√
Cρω
2κ

x − ωt

)
.

Hence

k0 =

√
Cρω
2κ

. [ 1 ]

(e) The end of a brass bar is heated and cooled so that its temperature

alternates with 1-second period between two fixed values. Describe how

the temperature variations will differ at different distances along the bar,

and, given that for brass Cρ/κ = 29 180 s m−2, find the speed with which

points of maximum temperature eventually propagate. [ 4 ]

The square wave applied at the end of the bar will undergo dispersion and attenuation as it

propagates down the bar. From the expression for k0, we see that the attenuation is greater for

higher frequencies. The square wave will hence become distorted, diminished, and increasingly

a sinusoidal variation at the fundamental frequency. [ 2 ]

From our expression for k0, we may determine the phase velocity, which at the fundamental

frequency will be the propagation speed of the temperature maxima,

vp =
ω

k0
= ω

√
2κ

Cρω
=

√
2κω
Cρ

. [ 1 ]

With the values given, we find a speed

vp =

√
2 × 2π s−1

29 180 s m−2 = 21 mm s−1. [ 1 ]
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B2. (a) What is meant by the Fourier transform? How may it be defined? [ 4 ]

The Fourier transform allows a function of time or position to be instead represented as a function

of frequency or spatial frequency - i.e. by the spectrum of sinusoidal or complex exponential

components into which it may be resolved. [ 2 ]

The component with a given frequency is obtained by multiplying the function by a sine wave (or

complex exponential wave) with the same (or opposite) frequency, and integrating over the range

of the function, e.g.

f (ω) =
1
√

2π

∫ ∞
−∞

f (t)e−iωtdt

f (ω) =

∫ ∞
−∞

f (t) cos(ωt)dt

where the factor of 1/
√

2π is an arbitrary choice determined by whether the aim is to symmetrize

the Fourier transform and its inverse or to normalize the intensity distribution. [ 2 ]

The figure below shows a section of a thin, flexible string of mass per unit length

ρ and subject to a tension T .

(b) By considering the net force acting on an element of the string (which,

shown in grey, may be considered approximately rigid), derive the wave

equation governing its transverse motion,

∂2y

∂t2 =
T
ρ

∂2y

∂x2 . [ 5 ]

Assuming no longitudinal motion, the mass of the element will be ρδx. [ 1 ]

The vertical component of tension will then be T sinϑ, where T is assumed constant as the string

is inextensible. For small ϑ this will be approximately

T tanϑ = T
∂y

∂x
. [ 1 ]

The net vertical component acting on the mass element will hence be

T
∂y

∂x

∣∣∣x0+ δx
2
− T

∂y

∂x

∣∣∣x0−
δx
2

[ 1 ]
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so by Newton’s second law

∂2y

∂t2 =
T
ρ

∂y
∂x

∣∣∣x0+ δx
2
−

∂y
∂x

∣∣∣x0−
δx
2

∂x
[ 1 ]

which, taking the limit δx→ 0, becomes

∂2y

∂t2 =
T
ρ

∂2y

∂x2 . [ 1 ]

(c) By substituting sinusoidal travelling waveform y(x, t) = y0 cos(kx − ωt + ϕ)
into the wave equation, find the dispersion relation between k and ω, and

hence show that the speed of propagation along the taut string is
√

T/ρ. [ 3 ]

Substituting the form given into the wave equation, we find

−ω2y0 cos(kx − ωt + ϕ) = −k2 T
ρ
y0 cos(kx − ωt + ϕ) [ 1 ]

which reduces to

ω2 =
T
ρ

k2 [ 0.5 ]

and hence

k = ±

√
ρ

T
ω. [ 0.5 ]

The phase velocity is hence

vp =
ω

k
=

√
T
ρ
. [ 1 ]

(d) Hence find the tension of a guitar string of length 520 mm and linear

density 0.002 kg m−1 when tuned to a frequency of 220Hz (the note A3). [ 2 ]

The wavelength λ of the fundamental mode is twice the string length l. Writing the wavelength in

terms of the frequency ν as λ = vp/ν, and using the above expression for vp, we obtain

T = ρv2
p = ρ(νλ)2 = ρ(2νl)2. [ 1 ]

With the values given, we hence obtain

T = 0.002
[
2(220 s−1)(0.52 m)

]2
= 105 N. [ 1 ]
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Ed Sheeran uses his loop station to record a rhythm track that comprises three

bursts of the same guitar note A3. The notes each last 1 s and are separated

by 0.25 s, with a pause of 1.5 s before the sequence ends. The resulting 5 s

track is repeated continuously throughout his song. A recording engineer uses

a high resolution spectrum analyser to monitor the intensity spectrum of the

loop track.

(e) Sketch the recorded signal as a function of time. [ 2 ]

The diagram should show a series of bursts of duration 1 s, separated by 0.25 s, and identify their

5 s repetition period. It will not be possible to resolve individual 220 Hz oscillations, which can be

indicated schematically. The burst envelopes need not be rectangular, the waveform within need

not be a pure sinusoid, and the three bursts need not be in phase. [ 2 ]

(f) Hence sketch, in as much detail as possible, the spectrum that the

engineer would obtain. [ 4 ]

The periodic waveform will have a discrete spectrum, with components spaced by 1/(5 s) =

0.2 Hz. [ 1 ]
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The 1 s duration of each note will, by the bandwidth theorem, result in a linewidth of ∼ 1 Hz –

i.e., about 5 components. Consideration of the Fourier transform will allow more detail if the burst

envelopes are rectangular or of another well-defined shape. [ 1 ]

The fundamental note should be centred on 220 Hz. [ 1 ]

The guitar is likely to produce overtones at multiples of 220 Hz. [ 1 ]
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B3. (a) Explain what is meant by the Doppler effect. [ 2 ]

The Doppler effect is the shift in the observed frequency of a wave when there is relative motion

between the observer and the wave source. [ 2 ]

A source of waves of angular frequency ωs moves with a velocity v and, at time

t = 0, is at a position r0 relative to a stationary observer.

(b) Show, with the aid of a diagram, that the distance from the source to the

observer at time t � |r0|/|v| will be given approximately by

r ≈ |r0| +
r0

|r0|
· vt. [ 4 ]

[ 2 ]

If t � |r0|/|v|, the change in the bearing of the source from the observer will be negligible, and

hence the distance will change only by the component of the change of position vt along the unit

position vector r0/|r0|. Adding this correction to the initial value, we obtain the expression given. [ 2 ]

(c) Show therefore that if the wave leaving the source at time t is ψ(t), then

that seen by the observer will be proportional to

ψ

(
t − t0 −

r0

|r0|
·

v
c

t
)
,

where t0 = |r0|/c and c is the speed with which the wave propagates. [ 3 ]

We assume that the observed wave will be proportional to ψ(t − τ) [1], where τ = r/c is the time it

takes the wave to travel from the source to the observer at speed c [1]. It follows that the observed

wave will be proportional to

ψ

(
t −
|r0|

c
−

r0

|r0|
·

vt
c

)

as required [1]. [ 3 ]
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(d) Hence show that the observed wave will have an angular frequency

ωs + δω, where
δω

ωs
= −

vx

c
,

and vx is the component of the source’s velocity away from the observer. [ 4 ]

If ψ(t) = ψ0 cosωst, then the observed wave will be proportional to

ψ0 cos
(
ωs

[
t − t0 −

r0

|r0|
·

v
c

t
])

= ψ0 cos
(
ωs

[
1 −

r0

|r0|
·

v
c

]
t − ωst0

)
. [ 1 ]

The observed frequency is the coefficient of t in this expression, and hence [ 1 ]

ωs + δω = ωs

[
1 −

r0

|r0|
·

v
c

]
[ 1 ]

where v · r0/|r0| = vx is the velocity component away from the observer, hence

δω/ωs = −vx/c. [ 1 ]

The source is an atom which, when at rest, emits or scatters photons of angular

frequency ω0. The atom emits a photon towards the observer, in whose frame

the photon has an energy h̄ω. The coordinate axes may be chosen so that

the x axis points from the observer to the source. Conservation of energy and

momentum upon the emission of the photon leads to the relations

h̄ω = h̄ω0 − m vx δv

m δv = h̄ω/c,

where δv is the change in the x-component of the atom’s velocity when it emits

the photon, m is the mass of the atom and vx is the mean component of its

velocity away from the observer.

(e) Show that the observed angular frequency will be

ω = ω0

(
1 +

vx

c

)−1
. [ 2 ]

Substituting the result from conservation of momentum into the expression from conservation of

energy, we find

h̄ω = h̄ω0 − mvx h̄
ω

c
1
m

[ 1 ]
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so, collecting together the terms in ω,

h̄ω
(

1 +
vx

c

)
= h̄ω0, [ 0.5 ]

hence the required result

ω = ω0

(
1 +

vx

c

)−1
. [ 0.5 ]

(f) Show therefore that, if vx � c, the Doppler shift of the photon due to the

motion of the atom will again be

δω = ω − ω0 ≈ −ω0
vx

c
. [ 3 ]

We may use the binomial expansion to obtain

ω = ω0

(
1 +

vx

c

)−1
= ω0

(
1 −

vx

c
+ · · ·

)
[ 1 ]

so that, if vx � c,

ω ≈ ω0

(
1 −

vx

c

)
[ 1 ]

and hence

δω ≡ ω − ω0 ≈ ω0

(
1 −

vx

c

)
− ω0 = −ω0

vx

c
. [ 1 ]

The Fraunhofer E line in the solar spectrum is due to absorption at wavelength

λ0 = 527 nm by Fe atoms in the photosphere, where the temperature T is

around 5 000 K.

(g) Estimate the variation δλ in the wavelength of the E line that is due to

thermal motion of the Fe atoms. The r.m.s. velocity component vx,rms for

a thermal distribution is given by v2
x,rms = kBT/m, where kB is Boltzmann’s

constant and the mass m of a Fe atom is 9.27×10−26 kg. [ 2 ]

You may assume that δλ/λ0 = δω/ω0.

Using the data given,

vx,rms =

√
kBT
m

=

√
1.38 × 10−23 × 5000

9.27 × 10−26 m s−1 = 863 m s−1. [ 1 ]

Hence

δλ = λ0
δω

ω0
= 527 ×

863
3 × 108 nm = 0.0015 nm. [ 1 ]
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B4. (a) Explain what is meant by Fraunhofer diffraction. [ 3 ]

Diffraction is the modification of a wave by its partial obstruction by an interposed object or

mask [1]. Fraunhofer diffraction is that observed sufficiently far from the mask that it may be

considered a function of the observed angle alone [1]. More specifically, Fraunhofer diffraction is

observed when the optical path from the source to detector depends linearly upon the position

coordinates within the diffracting mask; equivalently, it is observed in what would be, in the

absence of the mask, the image plane of the source [1]. [ 3 ]

(b) Show from first principles, with the aid of a diagram, that the dependence

upon angle of the relative amplitude of a wave of wavelength λ, diffracted

by a single slit of width a is given by the sinc function

a1(ϑ) ∝
sin
{
πa
λ

sinϑ
}

πa
λ

sinϑ
. [ 5 ]

[2 marks for diagram] [ 2 ]

If the slit, shown above with normal illumination, is taken to extend from x = −a/2 to x = a/2, then

the total diffracted amplitude will be [1 mark per line] [ 3 ]

a(ϑ) = a0

∫ a/2

−a/2
exp

(
i
2π
λ

x sinϑ
)

dx

=
a0

π sinϑ/λ
1
2i

[
exp

(
i
2πx sinϑ

λ

)]a/2

−a/2

=
a0

π sinϑ/λ
exp

( iπa sinϑ
λ

)
− exp

(
− iπa sinϑ

λ

)
2i

=
a0a

πa sinϑ/λ
sin

πa sinϑ
λ

∝
sin
(
πa
λ sinϑ

)
πa
λ sinϑ

.

(c) State the convolution theorem and explain how it may be used to determine

the diffraction patterns of regular arrays of a basic pattern. [ 3 ]
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The convolution theorem is that the Fourier transform of the convolution of two functions is equal

to the product of their individual transforms, i.e.,

FT {A ∗ B} = FT {A} × FT {B} . [ 1 ]

Because of the symmetry between a Fourier transform and its inverse, it follows that the Fourier

transform of the product of two functions is equal to the convolution of their individual transforms,

FT {A × B} = FT {A} ∗ FT {B} . [ 1 ]

Since the Fraunhofer diffraction pattern is related to the Fourier transform of the mask pattern, it

follows that, if the latter may be broken down into products and convolutions of functions whose

Fourier transforms (i.e. diffraction patterns) are known, then the overall diffraction pattern may be

written without further detailed calculation. [ 1 ]

The diffraction pattern of an infinite regular array of narrow slits, whose centres

are separated by a distance d, is given by

a2(ϑ) = a0

∞∑
n=0

δ

(
ϑ − n

λ

d

)
where ϑ is the angle through which the incident beam is diffracted.

(d) Write the transmission of a real diffraction grating, of width b and com-

posed of narrow slits of width c spaced by a distance d, as a combination

of products and convolutions of simple functions; [ 2 ]

i.e., transmission of real grating ≡ (single slit ∗ array of δ-functions) × wide slit. [ 2 ]

(e) Hence determine and sketch the diffraction pattern of such a grating. [ 4 ]

The diffraction pattern (DP) will therefore be

DP
{

grating
}

=

[
DP
{

singleslit
}
× DP

{
arrayofδfunctions

} ]
∗ DP {wideslit} . [ 2 ]
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[ 2 ]

(f) Given that for small angles (ϑ ∼ sinϑ), adjacent diffraction orders are

separated in angle by λ/d, and the width of each order is around λ/b,

estimate the theoretical resolution of a grating spectrograph for use in first

order at λ = 2000 nm when the grating parameters are b = 100 mm,

d = (1/300) mm, c = 0.3 µm. [ 3 ]

The angular width of each diffraction order is ∼ δϑ = λ/b, and the diffraction angle (i.e. angle

at which the centre of the diffraction order appears) depends upon the wavelength through

ϑ ≈ sinϑ = λ/d. A change from ϑ to ϑ + δϑ hence corresponds to a change in wavelength

of

δλ = δϑ
dλ
dϑ

= δϑ d =
λd
b
. [ 2 ]

With the value given, we hence obtain a resolution of

δλ = (2000 nm)
1/300 mm
100 mm

= 0.07 nm. [ 1 ]

[This assumes that the grating is optically flat across its width.]

END OF PAPER
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