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Abstract. We compare the efficiencies of two optical cooling schemes, where a single particle is either
inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling
forces using the general solution of a transfer matrix method for a moving scatterer inside a general
one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation
parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of
comparable magnitude.

1 Introduction

‘Traditional’ laser cooling schemes, such as those applied
to the alkali atoms [1,2] require a closed set of two [3] or
more [4] energy levels within which the atom cycles. These
schemes rely on the spontaneous atomic decay from the
excited to the ground state to carry atomic translational
energy away from the system. The requirement for a closed
set of levels means that laser cooling has only been shown
to be feasible for a small range of atomic species and for
even fewer molecules [5,6].

Cavity cooling [7] switches the energy decay process
from atomic spontaneous emission to the decay of a cav-
ity field. Specifically, the motion of an atom is coupled
to a cavity field, itself driven either directly or through
scattering from the atom [8], and the decay of this field
leads to damping of the atomic motion by a Sisyphus-
like [9] mechanism. This mechanism inherently relies solely
on the dipole force and should therefore be applicable to
any scatterer that is subject to the dipole force [10]. This
is the basis for recent investigations of cavity cooling of
micromirrors [11] and dielectric spheres [12].

In a recent paper [13] we used a scattering theory [14]
to examine the interaction between a particle and a ‘gen-
eralised interferometer’, and proposed an alternative to
cavity cooling whereby the particle to be cooled is not
inside the cavity, but outside it. By physically separat-
ing the atom from the cavity, one can use cavities that
are of much higher optical quality, or even solid-state,
rather than macroscopic, cavities, thereby rendering the
apparatus simpler and more amenable to miniaturisation.
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However, by placing the atom outside the cavity, the atom-
cavity coupling is reduced significantly. The important
question is whether, in practical implementations, these
two effects compensate for one another in such a way as
to render the cooling forces experienced by an atom out-
side a cavity similar to those it experiences inside.

To answer this question we will first describe the two
models, in Sections 2.2 and 2.3, respectively, using realistic
parameters for state-of-the-art optical devices. Taking into
account saturation effects, it is seen that the two models
result in similar cooling forces and equilibrium tempera-
tures. An examination of scaling properties of the force
acting on the atom in the two schemes then follows in
Section 3, after which we conclude in Section 4.

2 Comparison of cavity cooling schemes

2.1 Generic scattering model

The two situations we describe will be discussed within
the context of a scattering theory based on the transfer
matrix method [14]. This scattering model can substitute
the usual cavity QED calculations for these systems. At
each point in a one-dimensional space, and at each fre-
quency, the electric field is described by two complex am-
plitudes, representing two waves moving in opposite di-
rections, cf. Figure 1. The amplitudes A and B to the left
of a generic scatterer, modelled through its polarisabil-
ity ζ, are related to C and D to its right by means of a
2 × 2 matrix (

A
B

)
=

[
1 + iζ iζ
−iζ 1 − iζ

] (
C
D

)
. (1)
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Fig. 1. A scatterer, characterised by its polarisability ζ and ve-
locity v, interacting with the four field modes that surround it.

For a two-level atom in the low-saturation limit, we can
write

ζ = − σa

2S

Γ

Δ + iΓ
, (2)

where σa is the on-resonance scattering cross-section of
the atom, S the mode area of the beam, Γ the HWHM
linewidth of the transition, and Δ the detuning of the
pump beam from resonance with the transition. In the
case of a mirror, ζ is related to its macroscopic properties
via its reflectivity r = iζ/(1 − iζ) and its transmissivity
t = 1 + r = 1/(1 − iζ). Propagation of the electric field,
having wavenumber k, over a distance x in free space is
represented by the matrix[

eikx 0
0 e−ikx

]
. (3)

In this model, complex optical systems can be built by
multiplying the relevant matrices together, and the force
acting on any single optical component is determined by
the amplitudes of the fields interacting with it:

F full = 2ε0S
(|A|2 + |B|2 − |C|2 − |D|2) . (4)

By accounting in the transfer matrix for the motion of the
scatterer, following the process outlined in reference [14],
the full velocity-dependent force can be calculated to first
order in the scatterer velocity v and the friction force F 1

then extracted.
A more rigorous model can be built that uses quantised

fields rather than classical electromagnetic fields. In such a
model, the transfer matrices operate on the respective an-
nihilation operators, and a force operator can be defined in
much the same way as the force in equation (4). The two-
time autocorrelation function of this force operator can
then be used to obtain the momentum diffusion D acting
on the scatterer [14]. Finally, the fluctuation-dissipation
theorem [15] gives the equilibrium temperature T that the
motion of the scatterer will tend to:

kBT = − D

F 1/v
, (5)

which is only well-defined for a cooling force (F 1/v < 0),
and where kB is the Boltzmann constant.

Further details of the calculations leading to the above
expressions will not be presented in this paper. In the next
two sections, the model is applied directly to investigate
the nature of the cooling forces present in the two different
configurations.

2.2 Cavity mediated cooling: atom inside the cavity

Placing a scatterer – atom [7,16,17], micromirror [11,18],
or ‘point polarisable particle’ [10] – inside a cavity has
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Fig. 2. (a) Model of a scatterer, S, inside a symmetrical Fabry-
Pérot cavity of length Lc. The cavity mirrors have reflection
and transmission coefficients, r and t, and ζ is the polarisability
of S. (b) Friction coefficient, per unit input power, experienced
by the scatterer at different positions in the cavity, for realistic
parameters (see text for details).

long been pointed out to be a powerful means of cool-
ing the translational motion of that scatterer. Cooling of
atoms inside resonators has been observed: first [16] as
an increase in the storage time of atoms inside the cav-
ity, and more directly in reference [17]. The layout of such
an experiment is shown in Figure 2a. For our purposes,
we place the scatterer inside a symmetrical Fabry-Pérot
cavity of length Lc, which we pump from one side; the
dominant field inside the cavity is a standing wave if the
reflectivity of the mirrors, r, is sufficiently high. For a nu-
merical example, we use the same cavity properties as ref-
erence [19]: finesse F = 56 000 modelled by using mirrors
with t = r+1 = 1/(1+133.5i), cavity length 495µm, and
mode waist 30µm; we use a wavelength λ = 780nm. In
contrast with reference [19], however, our cavity is pumped
along its axis.

We also take the scatterer to be a two-level atom, with
the cavity field detuned 10Γ to the red of the atomic tran-
sition frequency. Thus, the polarisability of the atom is
ζ = 4.1 × 10−5 + 4.1 × 10−6i. The maximum friction co-
efficient is found at a detuning of −2.6κ from the cavity
resonance. As expected [10], the optimal friction coeffi-
cient occurs for a negative detuning, of the pump from the
bare cavity resonance, but for a positive detuning from the
dressed atom-cavity resonance.

The dependence of the friction force on the position
of the scatterer, scanned over a wavelength, is shown in
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Figure 2b. The presence of the cavity manifests itself pri-
marily through a strong enhancement of both the fric-
tion coefficient F 1/v and the intracavity field intensity
over their bare field values. The scattering model explored
above is only valid in the limit of small saturation; e.g.,
when power broadening of the atom is negligible and the
linear polarisability ζ in equation (2) applies. For the
85Rb D2 transition, assuming that the beam is circularly
polarised, the saturation intensity is 1.67mWcm−2 [20].
In order to avoid saturation effects, we restrict the power
input into the cavity to 2 pW; this equates to an in-
tracavity intensity of 23mWcm−2 and hence a satura-
tion parameter s = 0.14; this is because s is inversely
proportional to the square of the detuning, −10Γ in
this case, of the pump beam from resonance. In turn,
this input power yields a maximal friction coefficient of
−1.5 × 10−20 N/(m s−1), which corresponds to a 1/e ve-
locity cooling time of 9 µs for the same atom; averaging
the friction force over a wavelength gives a cooling time
of 37µs.

In the low-saturation regime, the friction force and mo-
mentum diffusion both scale linearly with input power; the
equilibrium temperature is therefore independent of the
pump power. For the parameters used above, the equilib-
rium temperature predicted for a scatterer at the point of
maximum friction is 56µK; averaging the friction coeffi-
cient, as well as the diffusion coefficient, over a wavelength,
gives a higher equilibrium temperature of 220µK.

2.3 External cavity cooling: atom outside the cavity

More recently [13] it was proposed that even with the
scatterer outside the cavity, the cavity’s resonance can be
exploited to enhance the optomechanical friction experi-
enced by the scatterer over that in the standard optome-
chanical cooling setups [21–23], which place the scatterer
in front of a single mirror. It is the aim of this section to ex-
plore this cooling mechanism, using experimental param-
eters similar to those in the previous section, and compare
it with the cavity mediated cooling mechanism discussed
there.

Our mathematical model, Figure 3, represents the
cavity as a standard, symmetrical Fabry-Pérot cavity.
However, we emphasise that in principle what is required
is simply an optical resonance: the cavity in the model
can indeed be replaced by whispering gallery mode res-
onators [24] or even solid-state resonators. As a basis for
numerical calculations, and to enable direct comparison,
we model the same resonator as in the previous section. It
is important to emphasise that the achievable quality fac-
tors of the resonators used for external cavity cooling can
often be made larger than the ones in the previous sec-
tion (see, e.g., Ref. [25]) because no optical or mechanical
access inside the resonator itself is required.

The pump beam frequency is again taken to be de-
tuned by 10Γ to the red of the atomic transition. By
placing the atom outside the cavity, one is free to use
high-numerical-aperture optics to produce a tighter fo-
cus than might be possible in a cavity with good optical
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Fig. 3. External cavity cooling. (a) Model, similar to Figure 2,
but with the atom at a distance L − x outside the cavity.
(b) Friction coefficient per unit input power experienced by
the scatterer as x is varied, for realistic parameters (see text
for details). Note the change of scale, on the vertical axis, from
Figure 2b.

and mechanical access. Having a tight focus strength-
ens the atom-field coupling because of the 1/w2 depen-
dence of ζ on the beam waist w; whereas the friction
force scales linearly with the input power, it also scales as
ζ2 ∼ 1/w4 [13]. Focussing the beam therefore increases the
atom-field coupling more than the local intensity. Thus, it
is now assumed that the beam is focussed down to 1 µm,
which gives ζ = 3.7 × 10−2 + 3.7 × 10−3i.

In order to make a fair comparison between the two
cases, we choose to set the saturation parameter s = 0.14,
as in the previous section. The maximum achievable fric-
tion force coefficient is then −2.9 × 10−21 N/(m s−1) for
200pW of input power, which compares well with the
previous result and leads to a 1/e velocity cooling time
of 50µs and an equilibrium temperature of 280µK. The
magnitude of the force in this case results from the
much smaller pumping beam mode waist, allowing the
use of much higher powers and subsequently leading to
a stronger atom-field interaction. With this beam waist
and finesse we would be restricted to input powers several
orders of magnitude smaller if the atom were inside such
a cavity.

In summary, whereas the friction force inside a cavity
is much stronger per unit input power and for the same
beam waist, the restrictions imposed on the magnitude of
these quantities when the atom is inside the cavity reduce
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Fig. 4. Spatial dependence of the friction force acting on an
atom inside a cavity with different mode waists but equal
detuning from resonance, 10Γ to the red. The smaller the
mode waist the stronger the friction force, by several orders
of magnitude, but the more significant localisation becomes.
(Parameters as in Sect. 2.2 but with ∂ζ/∂k = 0.)

the maximally achievable friction force to a figure similar
to when it lies outside the cavity.

3 Scaling properties of cavity cooling forces

3.1 Localisation

The broad nature of the spatial variations in the force
shown in Figure 2b is a consequence of the small polar-
isability of the atom in such a cavity. This is in sharp
contrast to the case of large polarisability, achieved by an
atom at a tight beam focus or by a micromirror, as shown
in Figure 4. A scatterer of larger polarisability would ex-
perience extremely narrow peaks, of spatial extent �λ, in
the friction force if it lies inside a cavity but not outside it.

Within the scattering model used in this paper, the
atom-cavity coupling can be tuned by varying either the
beam waist or the laser detuning from atomic resonance.
Experimentally, however, atom-cavity coupling is rarely
investigated close to resonance, in order to minimise the
effects of atomic decoherence through spontaneous emis-
sion. In such cases, this coupling can be increased by op-
erating a cavity with a small mode waist; this may in turn
be detrimental to the performance of the system due to
the strong sub-wavelength nature of the interaction, as
explored in Figure 4. The net effect of having a smaller
mode waist is that this not only demands extremely good
localisation but also tends to decrease the effective friction
coefficient drastically – by up to several orders of magni-
tude – because of spatial averaging effects; this will be
investigated in detail elsewhere.

In Section 2.3, no mention was made of the average
friction force acting on the scatterer; indeed this average
computes to approximately zero for any case involving far-
detuned atoms, or other particles with an approximately
constant polarisability, outside cavities. This, then, also
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Fig. 5. Spatial dependence of the friction force acting on
an atom outside a cavity, with different pumping field waists
but equal detuning from resonance, 10Γ to the red. The fric-
tion force scales roughly as the inverse fourth power of the
waist [26], but the length scale of the cooling and heating
regions is unaffected. (Parameters as in Sect. 2.3 but with
∂ζ/∂k = 0.)

demands localisation of the atom on a sub-wavelength
scale; whilst experimentally challenging this disadvantage
is somewhat mitigated by the easy mechanical and op-
tical access afforded by external cavity cooling schemes.
Moreover, Figure 5 shows that spatial resonances are gen-
erally much wider here than in Figure 4: the polarisability
of the atom can be varied over a very wide range with-
out affecting the length scale of the cooling and heating
regions.

In contrast with the atomic situation, if the scatterer is
a micromirror mounted on a cantilever, localisation does
not present such a problem, since such micromirrors nat-
urally undergo small oscillations and can be positioned
with sub-nm accuracy.

3.2 Scaling with cavity finesse and linewidth

Cavity-mediated cooling mechanisms depend heavily on
the physical properties of the cavity, namely its linewidth
κ and finesse F . These parameters can be tuned indepen-
dently by changing the length of the cavity and the reflec-
tivity of its mirrors. This section briefly explores how the
mechanisms considered scale with κ and F .

Expressions for the force acting on an atom inside a
good cavity are not simple to write down. Nevertheless, in
the good-cavity limit one may obtain an analytic formu-
lation for the limiting temperature [7]:

T =
�κ

kB
, (6)

i.e., making a cavity longer decreases the equilibrium tem-
perature proportionally. This result can be understood
by observing that whereas the diffusion constant depends
only on the intensity inside the cavity (∝ F), the friction
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Fig. 6. Spatial dependence of the friction force acting on an
atom outside a cavity, with detuning 10Γ to the red of res-
onance. Three different cavity lengths are shown; the friction
force scales almost linearly with the cavity length. Note the
different scaling factors and cavity lengths, given above each
curve. (Parameters as in Sect. 2.3 but with ∂ζ/∂k = 0.)

force scales linearly with both the intensity and, if the in-
tensity is kept constant, with the lifetime of the cavity field
(∝ 1/κ). The friction force is therefore proportional to
F/κ, and the equilibrium temperature proportional to κ.

As is known from reference [13], the friction force (F 1)
acting on an atom outside a cavity scales approximately
linearly with both the length and the finesse of the cav-
ity. This is interpreted in terms of a ‘distance folding’
mechanism: the lifetime of the light inside a cavity scales
inversely with its linewidth κ ∝ 1/

(FLC

)
if all other pa-

rameters are kept fixed. One can see this behaviour re-
produced in Figure 6, where the friction coefficient for
on an atom outside each of three cavities having different
lengths is shown. This mechanism loses its importance if
the atomic polarisability is too large, whereby the system
behaves more like two coupled cavities, or if the cavity is
too long. The momentum diffusion affecting the atom out-
side a cavity is essentially independent of the properties of
a good cavity, since it depends on the local intensity sur-
rounding the scatterer; putting these two results together,
then, gives [13]

T ≈ 1.9
�κ

kB
, (7)

in the limiting case of small polarisability and at the point
of maximum friction; i.e., the temperature scales in the
same way as for an atom inside the cavity. The numerical
factor in the preceding equation depends on ζ and is larger
for ζ ∼ 1.

The cavity linewidth also affects the velocity ‘capture
range’ of the cooling mechanisms discussed in this text.
In the case of cooling of atoms inside a cavity, it has
been discussed in the literature [27,28] that the mecha-
nism involved applies for atoms with a velocity |v| < κ/k.
The theory described in this paper is correct only up
to linear order in the velocity of the particle interact-
ing with the cavity [14]; within this framework, it does
not seem possible to make predictions for the capture
range. However, the external cavity cooling mechanism

is expected to operate as described in the regime where
the motion of the atom determines the slowest time-scale
of the system; for the good-cavity limit, this would neces-
sitate |v| < κ/k.

4 Conclusions

We have used the solution for the friction force and dif-
fusion constant experienced by a polarisable scatterer in-
teracting with a general 1D optical system to compare
two different ‘cavity enhanced’ cooling methods, where
the scatterer is either inside or outside the cavity. It was
found that, with state-of-the-art experimental parameters,
the constraints imposed by the saturation of atomic tran-
sitions imply that the two mechanisms produce friction
forces and lead to equilibrium temperatures that are of
comparable magnitudes. The velocity capture range of
both mechanisms scales linearly with the cavity linewidth,
and is therefore expected to be similar in the two cases.

It was also shown that for weakly polarisable scatter-
ers (e.g., atoms in the low-saturation regime), positioning
requirements are stronger for external cavity cooling due
to a net-zero spatially averaged friction force. This con-
clusion is reversed for strongly polarisable scatterers (e.g.,
micromirrors), in which case the friction force inside a
cavity varies over a much shorter length-scale than that
outside.
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