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2 PHYS2006W1

Section A

A1. Show that, if a fixed-length vector A rotates with angular velocity ω about an

axis defined by the vector ω̂, and we define ω ≡ ωω̂, then

dA
dt

= ω × A. [ 4 ]

From a suitable diagram, we see that the infinitessimal change dA resulting from rotation of A through

an infinitessimal angle dϕ about ω̂ will be

dA = ω̂ × Adϕ. [ 2 ]

Dividing by an infintessimal timestep dt and noting that the angular velocity ω ≡ dϕ/dt,

dA
dt

= ω̂ × A
dϕ
dt

= ωω̂ × A = ω × A. [ 2 ]

A2. State Kepler’s laws and outline the physical assumptions upon which they are

based. [ 4 ]

Kepler’s laws of planetary motion are

(a). The orbit of a planet is an ellipse with the Sun at one of its foci [ 1 ]

(b). The line from the Sun to the planet sweeps out equal areas in equal intervals of time [ 1 ]

(c). The square of the orbital period is proportional to the cube of the semi-major axis of its orbit [ 1 ]

Kepler’s laws assume conservation of energy, conservation of angular momentum, and non-relativistic,

Euclidean space; it may also/alternatively be mentioned that they assume gravity to be a central force

obeying the inverse square law, and that no external forces/torques act. In the stated form, M � m and

any tidal forces or effects of non-sphericity are neglected. [ 1 ]

A3. Show, either by adapting Gauss’s law or by direct integration, that the

gravitational attraction exerted at a point r by a spherically symmetrical mass

distribution is the same as that exerted by a point mass, positioned at the

centre of spherical symmetry R, whose mass is equal to that of the part of

the distribution that lies within a distance |r − R| of R. [ 4 ]
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3 PHYS2006W1

Since the gravitational and electrostatic forces both obey an inverse-square law, both follow a divergence

theorem [1], i.e., ‹
A

g · dA = −4πG
˚

V
dm

where g is the gravitational acceleration, G the gravitational constant, dm an element of mass, and

the integrals are over the surface and volume of a given region. For a spherically-symmetrical mass

distribution, and concentric spherical integration region whose surface includes the measurement point,

the value of g · dA will be the same at all points on the sphere, while rotational symmetry demands that

azimuthal components of g be zero [1]; a local value of g may hence be obtained [1]:

|g| =
∣∣∣∣ 1
4π

‹
A

g · dA
∣∣∣∣ =

∣∣∣∣ 1
4π

(−4πG)
˚

V
dm
∣∣∣∣ =

˚
V

Gdm

The gravitational acceleration hence depends upon the total mass contained within the spherical region,

and is not affected by mass that lies beyond it. Since the radial mass distribution within this region does

not matter, the acceleration is the same as if the mass were concentrated at the centre of the sphere [1]. [ 4 ]

[To obtain the result by direct integration, we consider a thin spherical shell of radius a, mass per unit

area ρ and total mass m = 4πρa2, concentric with the mass distribution. We break the shell into thin

rings of width a dϑ defined by the angle ϑ to the line from R to r, and of mass dm = ρ2πa sinϑadϑ =

(m/2) sinϑdϑ. The contribution of the annulus to the gravitational potential Φ at r is [1]

dΦ = −
G dm

R
= −

Gm
2

sinϑdϑ
R

where R is the distance from each point on the ring to r. Using the cosine rule,

R2 = r2 + a2 − 2ar cosϑ

where r ≡ |R− r|, we find that sinϑdϑ/R = dR/(ar) [1], and the contribution to the gravitational potential

from the entire shell is hence [1]

Φ(r) = −
Gm
2ar

ˆ r+a

|r−a|
dR =

{
−Gm/r for r ≥ a
−GM/a for r < a

.

Since for r < a the potential is constant, there is no gravitational force from a shell that encloses the

measurement point. The force is independent of a, and hence the same as if the mass were at the

centre of the distribution [1].]

A4. Show, using the perpendicular axis theorem or otherwise, that the moment of

inertia I of a square plate, about a perpendicular axis through its centre, is

given by

I =
MA
6
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4 PHYS2006W1

where M is the mass of the plate and A its area. [ 4 ]

The moment of inertia may be found by determining the moment of inertia about an axis of symmetry

within the plane of the plate and applying the perpendicular axis theorem, i.e. [one mark per line], [ 3 ]

Ix = Iy =

ˆ a/2

−a/2
x2ρadx

= ρa
[

x3

3

]a/2

−a/2
=
ρa
3

[(a
2

)3
−

(
−

a
2

)3
]

=
ρa4

12

=
ρa2a2

12
=

MA
12

.

where in the last line we have used that the plate area is A = a2 and mass is M = ρa2. Hence [1]

Iz = Ix + Iy =
MA
6
. [ 1 ]

Alternatively, by double integration, the moment of inertia I of a square plate of side a and mass ρ per

unit area will be [1 mark per line]

I =

ˆ a/2

−a/2

ˆ a/2

−a/2
ρ
(

x2 + y2) dx dy

= ρ

ˆ a/2

−a/2

[
2
3

(a
2

)3
+ y2a

]
dy

= ρ

[
2
3

(a
2

)3
a +

2
3

(a
2

)3
a
]

=
ρa4

6
.

Since the plate area and mass will be A = a2 and M = ρa2, we again find

I =
MA
6
.

A5. At a shooting range in central Australia (27◦ S), a rifle bullet is fired with an

initial speed (muzzle velocity) v horizontally towards the west. Explain how,

and in which direction, it is deflected as a result of the Earth’s rotation. [ 4 ]

In the frame of the shooting range, the bullet experiences centrifugal and Coriolis forces, which reflect

that the freely-moving bullet will continue in a straight line as the Earth rotates beneath it. [ 1 ]

Relative to the bullet, the shooting range will move along a circle perpendicular to the polar axis. Since

the Earth rotates from west to east, the shooting range will rise towards a westward-moving bullet, which

will hence appear to move downwards. [ 1 ]

The downward direction perpendicular to the polar axis will, for a point in the southern hemisphere, be

angled towards the south by an angle equal to the latitude of the point. [ 1 ]

The bullet will hence be deflected downwards and to the left (south), at an angle of 27◦ to the vertical. [ 1 ]
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Section B

B1. A bricklayer wishes to clear some left-over bricks from the top of a building,

and rigs up a simple hoist by attaching an empty barrel of mass m1 = 10 kg

to a line that passes over a pulley at the top. He hoists the barrel to the top of

the building, a height h = 25 m above the ground, and secures the line at the

bottom. He then fills the barrel with bricks of total mass m2 = 90 kg.

(a) Calculate (i) the tension in the line, and (ii) the load borne by the pulley. [ 4 ]

(i) Since the brick-bearing barrel, of total mass (m1 +m2) is stationary, its weight must be balanced by

the line tension T , so that

T = (m1 + m2)g (= 100g = 980 N) . [ 2 ]

(ii) Two parts of the line, each carrying a tension T , pull down on the pulley, so the load L that it bears

will be

L = 2T = 2(m1 + m2)g (= 200g = 1960 N) . [ 2 ]

The bricklayer, of mass m3 = 80 kg, then goes to the bottom and casts off the

line. Unfortunately the barrel starts moving down, jerking him off the ground.

He decides to hang on.

(b) (i) Show that the acceleration a experienced by the barrel will be

a = g [1 − 2m3/ (m1 + m2 + m3)] ,

and hence (ii) calculate the load now borne by the pulley. [ 7 ]

(i) Writing y as the distances of the barrel and bricklayer from their starting points, Newton’s second law

gives [ 2 ]

(m1 + m2)ÿ = (m1 + m2)g − T

m3ÿ = T − m3g.

Adding these expressions to eliminate the tension T , we obtain

a ≡ ÿ = g
m1 + m2 − m3

m1 + m2 + m3
= g

[
1 −

2m3

m1 + m2 + m3

] (
= g/9 = 1.09 m s−1) . [ 2 ]

(ii) Inserting this into our application of Newton’s second law gives the tension [ 2 ]

T = m3 (ÿ + g)

= m3g

[
2 −

2m3

m1 + m2 + m3

]
= 2g

(m1 + m2) m3

m1 + m2 + m3
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and hence the load on the pulley will be

L = 2T = 4g
(m1 + m2) m3

m1 + m2 + m3
(= (1600/9)g = 1742 N) . [ 1 ]

Halfway up, the bricklayer meets the barrel coming down.

(c) Neglecting friction and air resistance, calculate the relative speed with which

the barrel strikes the bricklayer. [ 3 ]

Under constant acceleration a from rest, the speed v after travelling a distance y = h/2 will be given by

v2 = 2ay = ah [ 1 ]

hence the relative speed will be

2v = 2

√
2gy

[
1 −

2m3

m1 + m2 + m3

]
= 2

√
gh
[

1 −
2m3

m1 + m2 + m3

] (
= 2
√

25g/9 = 10.4 m s−1
)
.

[ 2 ]

The bricklayer continues to be pulled to the top, banging his head against the

pulley beam. The barrel hits the ground and bursts at its bottom, allowing all

the bricks to spill out, leaving just the barrel attached to the line.

(d) Assuming that the barrel was slowed to a halt when it struck the bricklayer, find

the kinetic energy of the brick-laden barrel just before it hits the ground. [ 2 ]

The barrel falls the same distance as in (c), under the same acceleration, so its speed just before hitting

the ground will be as above; its kinetic energy E will hence be [ 2 ]

E =
1
2

(m1 + m2) v2

=
gh
2

(m1 + m2)
[

1 −
2m3

m1 + m2 + m3

]
(= 1250g/9 = 1361 J) .

The bricklayer is now heavier than the barrel, and so starts down again at high

speed. Halfway down, he meets the barrel coming up.

(e) Calculate the relative speed of the barrel when it strikes the bricklayer. [ 2 ]
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We may use the same expression as in (c), but set the barrel contents m2 to zero and reverse the

acceleration direction, giving

2v = 2

√
−gh

[
1 −

2m3

m1 + m3

] (
= 2
√

175g/9 = 27.6 m s−1
)
. [ 2 ]

The bricklayer continues to fall, and lands uncomfortably on the bricks. At this

point, he loses his presence of mind, and lets go of the line.

(f) Calculate the kinetic energy of the empty barrel when it lands on the bricklayer. [ 2 ]

Since, in the absence of friction and air resistance, energy is conserved, the kinetic energy E at the

ground will equal the potential energy with which the barrel started its descent

E = m1gh (= 250g = 2450 J) . [ 2 ]

[Gerard Hoffnung’s original telling: http://monologues.co.uk/004/Bricklayers Story.htm]
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B2. (a) Explain what is meant by (i) simple harmonic motion and (ii) the normal

mode of an oscillating system. [ 4 ]

(i) Simple harmonic motion is that of a single body when subject to a restoring force that is

proportional to its displacement, so that the displacement varies sinusoidally with time [ 2 ].

(ii) A normal mode is a motion in which all parts of the system oscillate with the same single

frequency and (therefore) with a fixed phase relationship between each other. [ 2 ]

(b) A simple pendulum of length l has a bob of mass m, subject to gravitational

acceleration g. The position of the pendulum bob is described by the angle

ϑ1 between the pendulum and the vertical, as shown in figure (a) above.

Show, explaining any approximations made, that for small angles |ϑ1| � 1,

the motion will be governed by the equation

d2ϑ1

dt2 = −
g

l
ϑ1. [ 4 ]

If W1 is the tension in the pendulum, the force on the bob will be mg + W1 [1]. Resolving and

assuming no motion perpendicular to the pendulum arc, this gives W1 = mg cosϑ1. Along the arc,

the component mg sinϑ1 [1] will cause the bob to accelerate. If x1 ≡ lϑ1 is the position along the

arc, we hence find

m
d2x1

dt2 = m1l
d2ϑ1

dt2 = −mg sinϑ1 ≈ −mgϑ1,

where the approximation [1] is valid for small angles, and hence [1]

d2ϑ1

dt2 = −
g

l
ϑ1. [ 4 ]

(c) A second pendulum, also of length l and with a bob of mass m, is

suspended from the bob of the first pendulum, and its position described
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by its angle ϑ2 to the vertical, as shown in figure (b) above. Show, again

for small angles |ϑ1,2| � 1, that

d2ϑ1

dt2 =
g

l
(ϑ2 − 2ϑ1) . [ 3 ]

The tension W2 in the second pendulum will, for small angles, be approximately mg [1]. This acts

upon the first bob to give a component mg sin(ϑ2 − ϑ1) ≈ mg(ϑ2 − ϑ1) [1] along the pendulum arc,

where the approximation is valid for small angles. The acceleration of the bob is hence modified

to [1]
d2ϑ1

dt2 = −
g

l
ϑ1 +

g

l
(ϑ2 − ϑ1) =

g

l
(ϑ2 − 2ϑ1) . [ 3 ]

(d) Show that, for small angles |ϑ1,2| � 1, the horizontal displacement of the

second bob is approximately l (ϑ1 + ϑ2) and hence show that

d2ϑ1

dt2 +
d2ϑ2

dt2 = −
g

l
ϑ2. [ 3 ]

The horizontal displacement will be l sinϑ1 + l sinϑ2. For small angles ϑ1,2, this is approximately

lϑ1 + lϑ2. [ 1 ]

As in part (b), the restoring force will have a component mg sinϑ2 ≈ mgϑ2 perpendicular to the

line of the second pendulum [1]. (This is not necessarily perpendicular to the path of the second

bob, but variations along the line of the bob will be accounted for by changes in the tension within

the pendulum.) Hence, from Newton’s second law,

m
d2

dt2 (lϑ1 + lϑ2) = −mgϑ2

which, after cancelling the common factor m, gives the requested result [1]. [ 2 ]

(e) Show that the motion of the double pendulum is therefore governed by the

equation
d2

dt2

(
ϑ1

ϑ2

)
=

(
−

2g
l

g
l

2g
l −

2g
l

)(
ϑ1

ϑ2

)
. [ 2 ]

The expressions of parts (c) and (d) are combined to give an expression for the acceleration of

the second bob alone [1]

d2ϑ2

dt2 = −
g

l
ϑ2 −

d2ϑ1

dt2
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= −
g

l
ϑ2 −

g

l
(ϑ2 − 2ϑ1)

= 2
g

l
(ϑ1 − ϑ2) .

This, together with the expression of part (c), are then written in matrix form as [1]

d2

dt2

(
ϑ1

ϑ2

)
=

(
−

2g
l

g
l

2g
l −

2g
l

)(
ϑ1

ϑ2

)
. [ 2 ]

(f) Hence derive the frequencies of the modes of the double pendulum. [ 4 ]

For a normal mode, we may write [1](
ϑ1

ϑ2

)
= eiωt

(
a1

a2

)

which, upon substitution into the expression of part (e), gives [1]

−ω2

(
a1

a2

)
=

(
−

2g
l

g
l

2g
l −

2g
l

)(
a1

a2

)

and hence (
ω2 −

2g
l

g
l

2g
l ω2 −

2g
l

)(
a1

a2

)
= 0.

This requires that the determinant of the matrix above be zero, and hence [1](
ω2 −

2g
l

)(
ω2 −

2g
l

)
−
g

l
2g
l

= 0

which yields the quadratic equation [0.5]

(
ω2)2

−
4g
l
ω2 +

2g2

l2
= 0

to which the solutions are

ω2 =

4g
l ±

√[
4g
l

]2
− 4 2g2

l2

2
=
g

l

(
2 ±
√

2
)

and hence [0.5]

ω =

√
g

l

(
2 ±
√

2
)
. [ 4 ]
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B3. A comet of mass m moves in the gravitational field of a star of mass M, and

its position is described by its polar coordinates (r, ϑ) relative to the star. The

gravitational potential is given byV(r) = GMm/r. Assume that M � m.

(a) Show that the angular momentum of the comet about the star will be

L = mr2ϑ̇, where ϑ̇ signifies dϑ/dt, the rate of change of ϑ with time. [ 2 ]

The tangential (azimuthal) component of the velocity will be rϑ̇ [1], so the angular momentum will

be L = mr
(
rϑ̇
)

= mr2ϑ̇ [1]. [ 2 ]

(b) Show that the comet’s total energy E may be written as

E =
m
2

ṙ2 +

(
L2

2mr2 −
GMm

r

)
≡

m
2

ṙ2 +U(r),

where ṙ ≡ dr/dt and U(r) is the effective potential in which the comet’s

radial motion occurs. [ 4 ]

The kinetic energy may be written as [1]

T =
1
2

mv2 =
m
2

[
ṙ2 +

(
rϑ̇
)2
]
.

The second term may be written in terms of the conserved angular momentum L, eliminating ϑ̇

and giving [1]

T =
1
2

mv2 =
m
2

ṙ2 +
L2

2mr2 .

The total energy is the sum of the kinetic and potential energies [1]

E = T +V =
m
2

ṙ2 +
L2

2mr2 +V(r) =
m
2

ṙ2 +
L2

2mr2 −
GMm

r
.

The last two terms depend only upon the radial coordinate r and may hence be combined into an

effective potential [1]

E =
m
2

ṙ2 +
L2

2mr2 −
GMm

r
≡

m
2

ṙ2 + U(r),

where

U(r) ≡
L2

2mr2 −
GMm

r
. [ 4 ]
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(c) Assuming that the comet follows an elliptical orbit with the star at one focus,

show from these results that the length 2a of the ellipse’s major axis will be

2a =
GMm
−E

. [ 4 ]

The equation of motion of the comet is

E =
m
2

ṙ2 +
L2

2mr2 −
GMm

r

where the total energy E and angular momentum L are conserved. At the aphelion and perihelion,

ṙ = 0, so [1]

E −
L2

2mr2 +
GMm

r
= 0,

which yields the quadratic equation [1]

Er2 + GMmr −
L2

2m
= 0.

This has solutions [1]

r =
−GMm ±

√
(GMm)2 − 4E L2

2m

2E

The length of the major axis of the ellipse will be the sum of these two solutions, i.e. [1],

2a =
GMm
−E

. [ 4 ]

(d) By differentiating the total energy with respect to the time t, derive the

equation of radial motion of the comet,

d2r
dt2 =

L2

m2r3 −
GM
r2 . [ 2 ]

Differentiating the expression given in (b), where the total energy E and angular momentum L are

conserved, we find [1]

0 =
m
2

2ṙr̈ −
L2

mr3 ṙ +
GMm

r2 ṙ

whence, dividing through by ṙ and rearranging, we obtain [1]

d2r
dt2 =

L2

m2r3 −
GM
r2 . [ 2 ]
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(e) By writing d
dt ≡ ϑ̇

d
dϑ ≡

L
mr2

d
dϑ and making the substitution r ≡ 1/u, show that

the equation of motion may be rewritten as

d2u
dϑ2 = −u +

GMm2

L2 . [ 4 ]

Making the substitutions suggested, [1]

Lu2

m
d

dϑ

(
L
m

u2 d
dϑ

1
u

)
=

L2

m2 u3 −GMu2

which becomes [1]
L2

m2 u2 d
dϑ

(
u2−1

u2
du
dϑ

)
=

L2

m2 u3 −GMu2

hence [1]

−
L2

m2 u2 d2u
dϑ2 =

L2

m2 u3 −GMu2

and thus [1]
d2u
dϑ2 = −u +

GMm2

L2 . [ 4 ]

(f) Hence show that the comet will trace out a path r(ϑ) of the form

r =
L2

GMm2 (1 + α cosϑ)

where

α2 = 1 +
2L2E

(GMm)2 m
. [ 4 ]

The expression of part (e) defines simple harmonic motion of u about the point u = GMm2/L2.

This may be shown explicitly by substituting the form given into the equation of motion [2]:

d2

dϑ2
GMm2 (1 + α cosϑ)

L2 = −
GMm2 (α cosϑ)

L2 = −
GMm2 (1 + α cosϑ)

L2 +
GMm2

L2 . [ 2 ]

Adding the maximum and minimum values of r we find the length of the major axis, and equate

this to the result from part (c) [1]:

2a =
L2

GMm2
(1 + α) + (1 − α)
(1 + α) (1 − α)

=
L2

GMm2
2

1 − α2 =
GMm
−E

hence [1]

α2 = 1 +
2L2E

(GMm)2 m
. [ 2 ]
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B4. (a) State the relationship between torque and angular momentum, and explain

what is meant by precession in the context of rotational motion. Give

an example of precession, and state the physical principle from which it

results. [ 5 ]

The torque τ applied to a system is equal to the rate of change of its angular momentum L,

τ =
dL
dt
. [ 1 ]

Precession is the variation of the axis of rotation of a spinning body [1] due to the application of

a torque about a different axis [1]. It is apparent in the toppling of a spinning top, the coupling

of atomic angular momenta, and the precession of the Earth’s axis (precession of the equinoxes)

around the ecliptic pole [1]. It results from the conservation of angular momentum [1] in a system

in which the precessing object is coupled to other rotational motions. [ 4 ]

A spinning top comprises a ring of mass M that is connected by spokes of

negligible mass to a light axle along the axis of rotational symmetry, about

which the top has a moment of inertia I. The axle is suspended at a pivot a

distance a from the ring’s centre of mass. When the top spins with angular

velocity ω the axle assumes a constant angle α to the vertical.

(b) Draw a suitably labelled diagram illustrating this situation. [ 2 ]

The diagram should show the ring, axle and pivot, the distance a (omitted above), angle α, and

indicate the rotation. [ 2 ]
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(c) Show that the moment of the disc’s weight about the support is

Mg a sinα

and hence that, if α is constant, the spinning disc precesses about the

support with angular frequency

Ω =
Mg a
Iω

. [ 4 ]

If a is the vector from the pivot to the centre of mass, then the moment of the weight Mg about the

pivot will be [the vector form is not required for the mark]

|a × Mg| = a sinαMg. [ 1 ]

If the spinning disc precesses with angular frequency Ω (ωp in the figure below), then

dL
dt

= Ω × L = ΩL sinα [ 1 ]

where L = Iω is the angular momentum of the spinning disc. Since for constant α the moment of

the weight is the torque applied to the spinning disc, this equals dL/dt, so

Mg a sinα = ΩL sinα = ΩIω sinα [ 1 ]

from which

Ω =
Mg a
Iω

. [ 1 ]

(d) The ring, of uniform thickness d, has an inner radius p and an outer radius

q. Show that, in terms of its total mass M, its moment of inertia is

I =
1
2

M
(

p2 + q2) . [ 4 ]

We may divide the ring into thin-walled tubes of radius r, radial thickness dr and density ρ per unit

area, each of which will have a moment of inertia

I(r)dr = (ρ2πrdr) r2. [ 1 ]

The total moment of inertia is found by integrating this from the inside to the outside of the ring:

I =

ˆ q

p
ρ2πr3dr = 2πρ

[
r4

4

]q

p
=
πρ

2
(
q4 − p4) =

πρ

2
(
q2 − p2) (q2 + p2) . [ 1 ]

The total mass is similarly found to be

M =

ˆ q

p
ρ2πrdr = 2πρ

[
r2

2

]q

p
= πρ

(
q2 − p2) . [ 1 ]
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The moment of inertia is hence

I =
1
2

M
(

p2 + q2) . [ 1 ]

(e) Hence find the time T = 2π/Ω it takes for the top to precess around a

vertical axis if p = 8 cm, q = 10 cm, d = 1 cm, a = 0.1 m, M = 0.3 kg and

the top spins at 5 revolutions per second. [ 2 ]

From the results of parts (b) and (c), we may write the precession period [1]

T ≡
2π
Ω

=
2πIω
Mga

=
πM

(
p2 + q2

)
ω

Mga
=
π
(

p2 + q2
)
ω

ga
.

Substituting the values given, we obtain [1]

T =
π
(
0.12 + 0.082

)
m2 2π × 5 s−1

9.8 m s−2 0.1 m
= 1.65 s. [ 2 ]

(f) The top is temporarily prevented from precessing by blocking the path of

the axle, while the top continues to rotate at an angle α to the vertical with

angular frequency ω. The top is then released. Describe its subsequent

motion. [ 3 ]

The top will not precess immediately with the angular frequency Ω calculated in part (b), for this

would imply instantaneous acceleration of its centre of mass [1]. While the rate of precession

is being established, the top will begin to fall under gravity, and its centre of mass will acquire a

downward velocity component that persists even when the force is cancelled, causing the top’s

descent to overshoot. The top will thus nod up and down as it precesses [1], in a motion known as

nutation. The initial angular momentum, comprising the top’s spin and the precession of its centre

of mass, is conserved, but angular momentum is exchanged between these two components [1]. [ 3 ]

END OF PAPER
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